Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 24(1)2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30621310

RESUMEN

Sustained pacemaker function is a challenge in biological pacemaker engineering. Human cardiomyocyte progenitor cells (CMPCs) have exhibited extended survival in the heart after transplantation. We studied whether lentivirally transduced CMPCs that express the pacemaker current If (encoded by HCN4) can be used as functional gene delivery vehicle in biological pacing. Human CMPCs were isolated from fetal hearts using magnetic beads coated with Sca-1 antibody, cultured in nondifferentiating conditions, and transduced with a green fluorescent protein (GFP)- or HCN4-GFP-expressing lentivirus. A patch-clamp analysis showed a large hyperpolarization-activated, time-dependent inward current (-20 pA/pF at -140 mV, n = 14) with properties typical of If in HCN4-GFP-expressing CMPCs. Gap-junctional coupling between CMPCs and neonatal rat ventricular myocytes (NRVMs) was demonstrated by efficient dye transfer and changes in spontaneous beating activity. In organ explant cultures, the number of preparations showing spontaneous beating activity increased from 6.3% in CMPC/GFP-injected preparations to 68.2% in CMPC/HCN4-GFP-injected preparations (P < 0.05). Furthermore, in CMPC/HCN4-GFP-injected preparations, isoproterenol induced a significant reduction in cycle lengths from 648 ± 169 to 392 ± 71 ms (P < 0.05). In sum, CMPCs expressing HCN4-GFP functionally couple to NRVMs and induce physiologically controlled pacemaker activity and may therefore provide an attractive delivery platform for sustained pacemaker function.


Asunto(s)
Técnicas de Transferencia de Gen , Ventrículos Cardíacos/trasplante , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Proteínas Musculares/genética , Miocitos Cardíacos/trasplante , Canales de Potasio/genética , Células Madre/citología , Animales , Terapia Genética/métodos , Proteínas Fluorescentes Verdes/química , Ventrículos Cardíacos/patología , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/uso terapéutico , Proteínas Musculares/uso terapéutico , Técnicas de Placa-Clamp , Canales de Potasio/uso terapéutico , Ratas , Trasplante de Células Madre
2.
PLoS One ; 8(3): e59290, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516623

RESUMEN

Testing cardiac gene and cell therapies in vitro requires a tissue substrate that survives for several days in culture while maintaining its physiological properties. The purpose of this study was to test whether culture of intact cardiac tissue of neonatal rat ventricles (organ explant culture) may be used as a model to study gene and cell therapy. We compared (immuno) histology and electrophysiology of organ explant cultures to both freshly isolated neonatal rat ventricular tissue and monolayers. (Immuno) histologic studies showed that organ explant cultures retained their fiber orientation, and that expression patterns of α-actinin, connexin-43, and α-smooth muscle actin did not change during culture. Intracellular voltage recordings showed that spontaneous beating was rare in organ explant cultures (20%) and freshly isolated tissue (17%), but common (82%) in monolayers. Accordingly, resting membrane potential was -83.9±4.4 mV in organ explant cultures, -80.5±3.5 mV in freshly isolated tissue, and -60.9±4.3 mV in monolayers. Conduction velocity, measured by optical mapping, was 18.2±1.0 cm/s in organ explant cultures, 18.0±1.2 cm/s in freshly isolated tissue, and 24.3±0.7 cm/s in monolayers. We found no differences in action potential duration (APD) between organ explant cultures and freshly isolated tissue, while APD of monolayers was prolonged (APD at 70% repolarization 88.8±7.8, 79.1±2.9, and 134.0±4.5 ms, respectively). Organ explant cultures and freshly isolated tissue could be paced up to frequencies within the normal range for neonatal rat (CL 150 ms), while monolayers could not. Successful lentiviral (LV) transduction was shown via Egfp gene transfer. Co-culture of organ explant cultures with spontaneously beating cardiomyocytes increased the occurrence of spontaneous beating activity of organ explant cultures to 86%. We conclude that organ explant cultures of neonatal rat ventricle are structurally and electrophysiologically similar to freshly isolated tissue and a suitable new model to study the effects of gene and cell therapy.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Terapia Genética/métodos , Ventrículos Cardíacos/crecimiento & desarrollo , Técnicas de Cultivo de Órganos/métodos , Animales , Animales Recién Nacidos , Miocitos Cardíacos/citología , Ratas , Ratas Wistar
3.
Cardiovasc Res ; 94(3): 439-49, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22419669

RESUMEN

AIM: Treatment of disorders of the sinus node or the atrioventricular node requires insights into the molecular mechanisms of development and homoeostasis of these pacemaker tissues. In the developing heart, transcription factor TBX3 is required for pacemaker and conduction system development. Here, we explore the role of TBX3 in the adult heart and investigate whether TBX3 is able to reprogramme terminally differentiated working cardiomyocytes into pacemaker cells. METHODS AND RESULTS: TBX3 expression was ectopically induced in cardiomyocytes of adult transgenic mice using tamoxifen. Expression analysis revealed an efficient switch from the working myocardial expression profile to that of the pacemaker myocardium. This included suppression of genes encoding gap junction subunits (Cx40, Cx43), the cardiac Na(+) channel (Na(V)1.5; I(Na)), and inwardly rectifying K(+) ion channels (K(ir) genes; I(K1)). Concordantly, we observed conduction slowing in these hearts and reductions in I(Na) and I(K1) in cardiomyocytes isolated from these hearts. The reduction in I(K1) resulted in a more depolarized maximum diastolic potential, thus enabling spontaneous diastolic depolarization. Neither ectopic pacemaker activity nor pacemaker current I(f) was observed. Lentiviral expression of TBX3 in ventricular cardiomyocytes resulted in conduction slowing and development of heterogeneous phenotypes, including depolarized and spontaneously active cardiomyocytes. CONCLUSIONS: TBX3 reprogrammes terminally differentiated working cardiomyocytes and induces important pacemaker properties. The ability of TBX3 to reduce intercellular coupling to overcome current-to-load mismatch and the ability to reduce I(K1) density to enable diastolic depolarization are promising TBX3 characteristics that may facilitate biological pacemaker formation strategies.


Asunto(s)
Relojes Biológicos/genética , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Ratones Transgénicos , Miocitos Cardíacos/citología , Nodo Sinoatrial/metabolismo , Proteínas de Dominio T Box/genética
4.
J Cardiovasc Transl Res ; 3(6): 663-73, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20857253

RESUMEN

Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited form of cardiomyopathy with low penetrance and variable expressivity. Dominant mutations and rare polymorphisms in desmosome genes are frequently identified. We reasoned that individuals with earlier onset disease would have more frequent desmosome gene mutations and rare polymorphisms. Three groups were compared: Young with symptoms attributable to ARVD/C or a diagnosis of ARVD/C at age of 21 years or earlier, Middle with first symptoms or diagnosis age of 22-49 years, and Late with first symptoms or diagnosis at age of 50 or more years. deoxyribonucleic acid (DNA) sequence analysis was performed on five cardiac desmosome genes, and the presence of mutations and rare missense polymorphisms was compared among the three groups. In the entire Young cohort, 20 (67%) had one or more cardiac desmosome gene mutations. The prevalence of cardiac desmosome gene mutations was similar in the Middle (48%) and Late (53%) cohorts (P = 0.23). Similar numbers of individuals in each cohort had more than one desmosome gene mutation, although the numbers are too small for statistical comparisons. The prevalence of certain rare missense DNA variants was not different among the cohorts (P = 0.71), yet these rare missense alleles were more prevalent in the overall study cohort of 112 ARVD/C participants compared to 100 race-matched controls (P = 0.027). The presence of these variants did not associate with the age of onset of ARVD/C or ventricular tachycardia. These findings highlight the complex interplay of environmental and genetic factors contributing to this condition.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/genética , Desmosomas/genética , Mutación , Polimorfismo Genético , Adolescente , Adulto , Edad de Inicio , Anciano , Displasia Ventricular Derecha Arritmogénica/epidemiología , Displasia Ventricular Derecha Arritmogénica/fisiopatología , Baltimore , Distribución de Chi-Cuadrado , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Fenotipo , Sistema de Registros , Medición de Riesgo , Factores de Riesgo , Adulto Joven
5.
Circ Cardiovasc Genet ; 2(5): 428-35, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20031617

RESUMEN

BACKGROUND: Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited disorder typically caused by mutations in components of the cardiac desmosome. The prevalence and significance of desmosome mutations among patients with ARVD/C in North America have not been described previously. We report comprehensive desmosome genetic analysis for 100 North Americans with clinically confirmed or suspected ARVD/C. METHODS AND RESULTS: In 82 individuals with ARVD/C and 18 people with suspected ARVD/C, DNA sequence analysis was performed on PKP2, DSG2, DSP, DSC2, and JUP. In those with ARVD/C, 52% harbored a desmosome mutation. A majority of these mutations occurred in PKP2. Notably, 3 of the individuals studied have a mutation in more than 1 gene. Patients with a desmosome mutation were more likely to have experienced ventricular tachycardia (73% versus 44%), and they presented at a younger age (33 versus 41 years) compared with those without a desmosome mutation. Men with ARVD/C were more likely than women to carry a desmosome mutation (63% versus 38%). A mutation was identified in 5 of 18 patients (28%) with suspected ARVD. In this smaller subgroup, there were no significant phenotypic differences identified between individuals with a desmosome mutation compared with those without a mutation. CONCLUSIONS: Our study shows that in 52% of North Americans with ARVD/C a mutation in one of the cardiac desmosome genes can be identified. Compared with those without a desmosome gene mutation, individuals with a desmosome gene mutation had earlier-onset ARVD/C and were more likely to have ventricular tachycardia.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/genética , Desmosomas/genética , Mutación , Adolescente , Adulto , Anciano , Secuencia de Aminoácidos , Niño , Preescolar , Estudios de Cohortes , Desmocolinas/química , Desmocolinas/genética , Desmogleína 2/química , Desmogleína 2/genética , Desmoplaquinas/química , Desmoplaquinas/genética , Desmosomas/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , América del Norte , Linaje , Placofilinas/química , Placofilinas/genética , Alineación de Secuencia , Adulto Joven , gamma Catenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...