Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Phys Chem Chem Phys ; 26(1): 47-56, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38054374

RESUMEN

The mechanism underlying visual restoration in blind animal models of retinitis pigmentosa using a liquid retina prosthesis based on semiconductive polymeric nanoparticles is still being debated. Through the application of mathematical models and specific experiments, we developed a coherent understanding of abiotic/biotic coupling, capturing the essential mechanism of photostimulation responsible for nanoparticle-induced retina activation. Our modeling is based on the solution of drift-diffusion and Poisson-Nernst-Planck models in the multi-physics neuron-cleft-nanoparticle-extracellular space domain, accounting for the electro-chemical motion of all the relevant species following photoexcitation. Modeling was coupled with electron microscopy to estimate the size of the neuron-nanoparticle cleft and electrophysiology on retina explants acutely or chronically injected with nanoparticles. Overall, we present a consistent picture of electrostatic depolarization of the bipolar cell driven by the pseudo-capacitive charging of the nanoparticle. We demonstrate that the highly resistive cleft composition, due to filling by adhesion/extracellular matrix proteins, is a crucial ingredient for establishing functional electrostatic coupling. Additionally, we show that the photo-chemical generation of reactive oxygen species (ROS) becomes relevant only at very high light intensities, far exceeding the physiological ones, in agreement with the lack of phototoxicity shown in vivo.


Asunto(s)
Nanopartículas , Polímeros , Animales , Retina , Neuronas , Modelos Teóricos
2.
ACS Nano ; 17(22): 22800-22820, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37934489

RESUMEN

Degeneration of photoreceptors in age-related macular degeneration (AMD) is associated with oxidative stress due to the intense aerobic metabolism of rods and cones that if not properly counterbalanced by endogenous antioxidant mechanisms can precipitate photoreceptor degeneration. In spite of being a priority eye disease for its high incidence in the elderly, no effective treatments for AMD exist. While systemic administration of antioxidants has been unsuccessful in slowing down degeneration, locally administered rare-earth nanoparticles were shown to be effective in preventing retinal photo-oxidative damage. However, because of inherent problems of dispersion in biological media, limited antioxidant power, and short lifetimes, these NPs are still confined to the preclinical stage. Here we propose platinum nanoparticles (PtNPs), potent antioxidant nanozymes, as a therapeutic tool for AMD. PtNPs exhibit high catalytic activity at minimal concentrations and protect primary neurons against oxidative insults and the ensuing apoptosis. We tested the efficacy of intravitreally injected PtNPs in preventing or mitigating light damage produced in dark-reared albino Sprague-Dawley rats by in vivo electroretinography (ERG) and ex vivo retina morphology and electrophysiology. We found that both preventive and postlesional treatments with PtNPs increased the amplitude of ERG responses to light stimuli. Ex vivo recordings demonstrated the selective preservation of ON retinal ganglion cell responses to light stimulation in lesioned retinas treated with PtNPs. PtNPs administered after light damage significantly preserved the number of photoreceptors and inhibited the inflammatory response to degeneration, while the preventive treatment had a milder effect. The data indicate that PtNPs can effectively break the vicious cycle linking oxidative stress, degeneration, and inflammation by exerting antioxidant and anti-inflammatory actions. The increased photoreceptor survival and visual performances in degenerated retinas, together with their high biocompatibility, make PtNPs a potential strategy to cure AMD.


Asunto(s)
Degeneración Macular , Nanopartículas del Metal , Degeneración Retiniana , Humanos , Ratas , Animales , Anciano , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Antioxidantes/farmacología , Nanopartículas del Metal/uso terapéutico , Retina/metabolismo , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/etiología , Degeneración Retiniana/metabolismo , Degeneración Macular/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inflamación/complicaciones , Ratas Sprague-Dawley , Luz , Modelos Animales de Enfermedad
3.
J Fungi (Basel) ; 9(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108951

RESUMEN

Fomitiporia mediterranea (Fmed) is the primary Basidiomycota species causing white rot in European vineyards affected by the Esca complex of diseases (ECD). In the last few years, an increasing number of studies have highlighted the importance of reconsidering the role of Fmed in ECD etiology, justifying an increase in research interest related to Fmed's biomolecular pathogenetic mechanisms. In the context of the current re-evaluation of the binary distinction (brown vs. white rot) between biomolecular decay pathways induced by Basidiomycota species, our research aims to investigate the potential for non-enzymatic mechanisms adopted by Fmed, which is typically described as a white rot fungus. Our results demonstrate how, in liquid culture reproducing nutrient restriction conditions often found in wood, Fmed can produce low molecular weight compounds, the hallmark of the non-enzymatic "chelator-mediated Fenton" (CMF) reaction, originally described for brown rot fungi. CMF reactions can redox cycle with ferric iron, generating hydrogen peroxide and ferrous iron, necessary reactants leading to hydroxyl radical (•OH) production. These observations led to the conclusion that a non-enzymatic radical-generating CMF-like mechanism may be utilized by Fmed, potentially together with an enzymatic pool, to contribute to degrading wood constituents; moreover, indicating significant variability between strains.

4.
ACS Appl Mater Interfaces ; 15(10): 13472-13483, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857156

RESUMEN

This study shows that entirely thiophene-based core@shell nanoparticles, in which the shell is made of the oxidized form of the core polymer (P3HT@PTDOx NPs), result in a type II interface at the particle surface. This enables the development of advanced photon nanotransducers with unique chemical-physical and biofunctional properties due to the core@shell nanoarchitecture. We demonstrate that P3HT@PTDOx NPs present a different spatial localization of the excitation energy with respect to the nonoxidized NPs, showing a prevalence of surface states as a result of a different alignment of the HOMO/LUMO energy levels between the core and shell. This allows for the efficient photostimulation of retinal neurons. Indeed, thanks to the stronger and longer-lived charge separation, P3HT@PTDOx NPs, administered subretinally in degenerate retinas from the blind Royal College of Surgeons rats, are more effective in photostimulation of inner retinal neurons than the gold standard P3HT NPs.


Asunto(s)
Nanopartículas , Ratas , Animales , Tiofenos , Polímeros , Retina
5.
Sci Rep ; 12(1): 21561, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513717

RESUMEN

Visual information processing in the retina requires the rhythmic expression of clock genes. The intrinsic retinal circadian clock is independent of the master clock located in the hypothalamic suprachiasmatic nucleus and emerges from retinal cells, including glia. Less clear is how glial oscillators influence the daily regulation of visual information processing in the mouse retina. Here, we demonstrate that the adult conditional deletion of the gene Bmal1 in GLAST-positive glial cells alters retinal physiology. Specifically, such deletion was sufficient to lower the amplitude of the electroretinogram b-wave recorded under light-adapted conditions. Furthermore, recordings from > 20,000 retinal ganglion cells (RGCs), the retina output, showed a non-uniform effect on RGCs activity in response to light across different cell types and over a 24-h period. Overall, our results suggest a new role of a glial circadian gene in adjusting mammalian retinal output throughout the night-day cycle.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Ratones , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Mamíferos , Neuroglía , Retina/metabolismo , Núcleo Supraquiasmático/fisiología
6.
Front Plant Sci ; 13: 1006835, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275539

RESUMEN

Grapevine grafting is an essential practice in viticulture and over the years, various bench grafting techniques have been developed to mechanize the nursery process and to increase the yield in number of viable cuttings. Bench grafting is a fundamental nursery practice that can potentially affect the quality of propagation material also in young decline associated to grapevine trunk diseases and has been recently reported to influence leaf symptoms development associated with diseases of Esca complex. The study aimed to investigate how three bench grafting methods [i.e., (i) Omega graft as mechanical technique, (ii) Whip and Tongue graft as manual technique and (iii) Full Cleft graft as semi-mechanical technique] can influence these phenomena. Specifically, the different methods were compared for their effect on the anatomical development of the grafting point and the functionality of the xylem, also considering two factors: the grapevine cultivar (Cabernet Sauvignon, Glera and Teroldego) and the scion/rootstock diameter (thin and large). Observations by light microscopy on the anatomical evolution and measurements on the xylem morphology and hydraulic traits were correlated with the grafting methods and the investigated varieties. The anatomical observations revealed that the mechanical (Omega) and semi-mechanical (Full Cleft) grafting methods have a faster callusing response while the manual technique (Whip and Tongue) has a slower but greater vascularization of the differentiated callus. Significant differences between cultivars and/or grafting types were also detected in necrotic area on the grafted tissues. Statistical analysis of the grapevine vessels suggested differences in xylem parameters between cultivars, while grafting type had no significant effects. On the other hand, the grafting type significantly affected the intrinsic growth rate. The study confirms the potential incidence of lesions and dysfunctionalities correlated with the grafting method applied, which can potentially induce grafted vine declines in vineyards due to the necrotic area detected on the grafted tissues.

7.
Proc Natl Acad Sci U S A ; 119(19): e2117553119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35522714

RESUMEN

Regional phenotypic and functional differences in the retinal pigment epithelium (RPE) monolayer have been suggested to account for regional susceptibility in ocular diseases such as age-related macular degeneration (AMD), late-onset retinal degeneration (L-ORD), and choroideremia (CHM). However, a comprehensive description of human topographical RPE diversity is not yet available, thus limiting the understanding of regional RPE diversity and degenerative disease sensitivity in the eye. To develop a complete morphometric RPE map of the human eye, artificial intelligence­based software was trained to recognize, segment, and analyze RPE borders. Five statistically different, concentric RPE subpopulations (P1 to P5) were identified using cell area as a parameter, including a subpopulation (P4) with cell area comparable to that of macular cells in the far periphery of the eye. This work provides a complete reference map of human RPE subpopulations and their location in the eye. In addition, the analysis of cadaver non-AMD and AMD eyes and ultra-widefield fundus images of patients revealed differential vulnerability of the five RPE subpopulations to different retinal diseases.


Asunto(s)
Mácula Lútea , Enfermedades de la Retina , Inteligencia Artificial , Humanos , Enfermedades de la Retina/genética , Epitelio Pigmentado de la Retina
8.
Cells ; 10(6)2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205615

RESUMEN

Retinal neurodegeneration can impair visual perception at different levels, involving not only photoreceptors, which are the most metabolically active cells, but also the inner retina. Compensatory mechanisms may hide the first signs of these impairments and reduce the likelihood of receiving timely treatments. Therefore, it is essential to characterize the early critical steps in the neurodegenerative progression to design adequate therapies. This paper describes and correlates early morphological and biochemical changes in the degenerating retina with in vivo functional analysis of retinal activity and investigates the progression of neurodegenerative stages for up to 7 months. For these purposes, Sprague-Dawley rats were exposed to 1000 lux light either for different durations (12 h to 24 h) and examined seven days afterward (7d) or for a fixed duration (24 h) and monitored at various time points following the exposure (up to 210d). Flash electroretinogram (fERG) recordings were correlated with morphological and histological analyses to evaluate outer and inner retinal disruptions, gliosis, trophic factor release, and microglial activation. Twelve hours or fifteen hours of exposure to constant light led to a severe retinal dysfunction with only minor morphological changes. Therefore, early pathological signs might be hidden by compensatory mechanisms that silence retinal dysfunction, accounting for the discrepancy between photoreceptor loss and retinal functional output. The long-term analysis showed a transient functional recovery, maximum at 45 days, despite a progressive loss of photoreceptors and coincident increases in glial fibrillary acidic protein (GFAP) and basic fibroblast growth factor-2 (bFGF-2) expression. Interestingly, the progression of the disease presented different patterns in the dorsal and ventral retina. The information acquired gives us the potential to develop a specific diagnostic tool to monitor the disease's progression and treatment efficacy.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/biosíntesis , Regulación de la Expresión Génica/efectos de la radiación , Proteína Ácida Fibrilar de la Glía/biosíntesis , Luz , Retina , Degeneración Retiniana , Animales , Electrorretinografía , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Retina/patología , Retina/fisiopatología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/fisiopatología , Factores de Tiempo
9.
Plants (Basel) ; 10(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064249

RESUMEN

Esca of grapevine causes yield losses correlated with incidence and severity symptom expression. Factors associated with leaf symptom mechanisms are yet to be fully clarified. Therefore, in 2019 and 2020, macro and microelement analyses and leaf reflectance measurements were carried out on leaves at different growth stages in a vineyard located in Abruzzo, central Italy. Surveys were carried out on leaves of both never leaf-symptomatic vines and different categories of diseased vine shoots. Never leaf-symptomatic and diseased vines were also treated with a fertilizer mixture that proved to be able to limit the symptom expression. Results showed that untreated asymptomatic diseased vines had high calcium contents for most of the vegetative season. On the contrary, treated asymptomatic diseased vines showed higher contents of calcium, magnesium, and sodium, at berries pea-sized, before the onset of symptoms. These vines had better physiological efficiency showing higher water index (WI), normalized difference vegetation index (NDVI), and green normalized difference vegetation index (GNDVI) values, compared to untreated asymptomatic vines, at fruit set. Results confirmed the strong response of the plant to symptom expression development and the possibility of limiting this response with calcium and magnesium applications carried out before the symptom onset.

10.
Front Plant Sci ; 12: 649694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790931

RESUMEN

Grapevine trunk diseases (GTDs) are a serious and growing threat to vineyards worldwide. The need for innovative control tools persists since pesticides used against some GTDs have been banned and only methods to prevent infections or to reduce foliar symptoms have been developed so far. In this context, the application of imaging methods, already applied to study plant-microbe interactions, represents an interesting approach to understand the effect of experimental treatments applied to reduce fungal colonization, on GTD-related pathogens activity. To this aim, trials were carried out to evaluate the efficacy of copper-based treatments, formulated with hydroxyapatite (HA) as co-adjuvant with innovative delivery properties, loaded with two different copper(II) compounds (tribasic sulfate and sulfate pentahydrate), and applied to grapevine propagation material to inhibit fungal wood colonization. The treated rootstock (Vitis berlandieri × Vitis riparia cv. K5BB) and scion cuttings (Vitis vinifera L., cv. Chardonnay) had been inoculated with a strain of Phaeoacremonium minimum (Pmi) compared to uninoculated rootstocks. Experimental treatments were applied during the water-soaking process, comparing the copper(II) compounds pure or formulated with HA, to hydrate the cuttings. After callusing, grafted vines were grown under greenhouse conditions in a nursery and inoculated with Pmi::gfp7 or with Pmi wild-type. Fifteen weeks post-inoculation, woody tissues close to the inoculation site were sampled to evaluate the efficiency of the treatments by studying the plant-microbe interaction by confocal laser scanning microscopy (CLSM). Copper and further elements were also quantified in the same tissues immediately after the treatments and on the CLSM samples. Finally, the grapevine defense responses were studied in the leaves of cuttings treated with the same formulations. The present investigation confirmed the relevant interaction of Pmi and the related transformed strain on the vascular tissues of grafted vines. Furthermore, in vitro assay revealed (i) the fungistatic effect of HA and the reduced effect of Cu fungicide when combined with HA. In planta assays showed (ii) the reduction of Pmi infection in propagation material treated with HA-Cu formulations, (iii) the movement of HA-Cu formulations inside the plant tissues and their persistence over time, and (iv) the plant defense reaction following the treatment with pure HA or Cu, or combined.

11.
Nutrients ; 13(3)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673449

RESUMEN

Retinal diseases can be induced by a variety of factors, including gene mutations, environmental stresses and dysmetabolic processes. The result is a progressive deterioration of visual function, which sometimes leads to blindness. Many treatments are under investigation, though results are still mostly unsatisfactory and restricted to specific pathologies, particularly in the case of gene therapy. The majority of treatments have been tested in animal models, but very few have progressed to human clinical trials. A relevant approach is to study the relation between the type of treatments and the degenerative characteristics of the animal model to better understand the effectiveness of each therapy. Here we compare the results obtained from different animal models treated with natural compounds (saffron and naringenin) to anticipate the potentiality of a single treatment in different pathologies.


Asunto(s)
Crocus , Flavanonas/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Enfermedades de la Retina/tratamiento farmacológico , Neuronas Retinianas/patología , Envejecimiento , Animales , Suplementos Dietéticos , Masculino , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/química , Ratas , Ratas Endogámicas F344 , Enfermedades de la Retina/patología , Neuronas Retinianas/efectos de los fármacos
12.
Front Microbiol ; 12: 813410, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154039

RESUMEN

Grapevine trunk diseases are widespread in all grape-growing countries. The diseases included in the Esca complex of diseases are particularly common in European vineyards. Their distinctive foliar symptoms are well known to be associated not only with losses in quantity, as with all grapevine wood diseases, but also with losses in the quality of the crop. Protection of pruning wounds is known to reduce infections in artificial inoculations and, to some extent, reduce the external leaf symptoms. The application of biological control agents in the field is typically started at the first appearance of symptoms. In this article, the two strains belonging to two different species, Trichoderma asperellum ICC 012 and T. gamsii ICC 080, which are present in a commercial formulation, were tested in vitro, in vivo in artificial inoculation, and in the field in long-term experiments where the wounds on four young asymptomatic vineyards were protected since 1 or 2 years after planting. The in vitro trials highlighted the different temperature requirements of the two strains, the direct mycoparasitizing activity of T. asperellum, and the indirect activity shown by both Trichoderma strains. The in vivo trials confirmed the ability of the two strains to reduce the colonization following artificial inoculations with the high, unnatural concentration of spores used in artificial infections, even if with variable efficacy, and with long persistence as they could be reisolated 7 months post-application. The preventive applications carried out over 9 years showed a very high reduction in symptom development in the treated vines, on annual and cumulated incidence and on the death of vines, with disease reduction varying from 66 to almost 90%. Early and annual application of protection to the pruning wounds appears to be the best method for reducing damages caused by grapevine leaf stripe disease (a disease of the Esca complex of diseases). Trichoderma appears to offer an efficient, environmentally friendly, and long-lasting protection in the presence of a natural inoculum concentration.

13.
Front Bioeng Biotechnol ; 8: 579141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195139

RESUMEN

The progressive degeneration of retinal photoreceptors is one of the most significant causes of blindness in humans. Conjugated polymers represent an attractive solution to the field of retinal prostheses, and a multi-layer fully organic prosthesis implanted subretinally in dystrophic Royal College of Surgeons (RCS) rats was able to rescue visual functions. As a step toward human translation, we report here the fabrication and in vivo testing of a similar device engineered to adapt to the human-like size of the eye of the domestic pig, an excellent animal paradigm to test therapeutic strategies for photoreceptors degeneration. The active conjugated polymers were layered onto two distinct passive substrates, namely electro-spun silk fibroin (ESF) and polyethylene terephthalate (PET). Naive pigs were implanted subretinally with the active device in one eye, while the contralateral eye was sham implanted with substrate only. Retinal morphology and functionality were assessed before and after surgery by means of in vivo optical coherence tomography and full-field electroretinogram (ff-ERG) analysis. After the sacrifice, the retina morphology and inflammatory markers were analyzed by immunohistochemistry of the excised retinas. Surprisingly, ESF-based prostheses caused a proliferative vitreoretinopathy with disappearance of the ff-ERG b-wave in the implanted eyes. In contrast, PET-based active devices did not evoke significant inflammatory responses. As expected, the subretinal implantation of both PET only and the PET-based prosthesis locally decreased the thickness of the outer nuclear layer due to local photoreceptor loss. However, while the implantation of the PET only substrate decreased the ff-ERG b-wave amplitude with respect to the pre-implant ERG, the eyes implanted with the active device fully preserved the ERG responses, indicating an active compensation of the surgery-induced photoreceptor loss. Our findings highlight the possibility of developing a new generation of conjugated polymer/PET-based prosthetic devices that are highly biocompatible and potentially suitable for subretinal implantation in patients suffering from degenerative blindness.

15.
Sci Rep ; 10(1): 16549, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024225

RESUMEN

The retina is a complex circuit of the central nervous system whose aim is to encode visual stimuli prior the higher order processing performed in the visual cortex. Due to the importance of its role, modeling the retina to advance in interpreting its spiking activity output is a well studied problem. In particular, it has been shown that latent variable models can be used to model the joint distribution of Retinal Ganglion Cells (RGCs). In this work, we validate the applicability of Restricted Boltzmann Machines to model the spiking activity responses of a large a population of RGCs recorded with high-resolution electrode arrays. In particular, we show that latent variables can encode modes in the RGC activity distribution that are closely related to the visual stimuli. In contrast to previous work, we further validate our findings by comparing results associated with recordings from retinas under normal and altered encoding conditions obtained by pharmacological manipulation. In these conditions, we observe that the model reflects well-known physiological behaviors of the retina. Finally, we show that we can also discover temporal patterns, associated with distinct dynamics of the stimuli.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Algoritmos , Animales , Ratones , Estimulación Luminosa
16.
Cells ; 9(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756469

RESUMEN

The high mortality rate of colorectal cancer (CRC) patients is directly associated with metastatic dissemination. However, therapeutic options specifically for metastasis are still limited. We previously identified Metastasis-Associated in Colon Cancer 1 (MACC1) as a major causal metastasis-inducing gene. Numerous studies confirmed its value as a biomarker for metastasis risk. We investigated the inhibitory impact of saffron on MACC1-induced cancer cell growth and motility. Saffron crudes restricted the proliferation and migration of MACC1-expressing CRC cells in a concentration- and MACC1-dependent manner. Saffron delays cell cycle progression at G2/M-phase and does not induce apoptosis. Rescue experiments showed that these effects are reversible. Analysis of active saffron compounds elucidated that crocin was the main compound that reproduced total saffron crudes effects. We showed the interaction of MACC1 with the cancer stem cell (CSC) marker DCLK1, which contributes to metastasis formation in different tumor entities. Saffron extracts reduced DCLK1 with crocin being responsible for this reduction. Saffron's anti-proliferative and anti-migratory effects in MACC1-expressing cells are mediated by crocin through DCLK1 down-regulation. This research is the first identification of saffron-based compounds restricting cancer cell proliferation and motility progression via the novel target MACC1.


Asunto(s)
Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Crocus/química , Transactivadores/metabolismo , Antineoplásicos/química , Carotenoides/análisis , Carotenoides/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Quinasas Similares a Doblecortina , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/genética
17.
Nat Nanotechnol ; 15(8): 698-708, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32601447

RESUMEN

Inherited retinal dystrophies and late-stage age-related macular degeneration, for which treatments remain limited, are among the most prevalent causes of legal blindness. Retinal prostheses have been developed to stimulate the inner retinal network; however, lack of sensitivity and resolution, and the need for wiring or external cameras, have limited their application. Here we show that conjugated polymer nanoparticles (P3HT NPs) mediate light-evoked stimulation of retinal neurons and persistently rescue visual functions when subretinally injected in a rat model of retinitis pigmentosa. P3HT NPs spread out over the entire subretinal space and promote light-dependent activation of spared inner retinal neurons, recovering subcortical, cortical and behavioural visual responses in the absence of trophic effects or retinal inflammation. By conferring sustained light sensitivity to degenerate retinas after a single injection, and with the potential for high spatial resolution, P3HT NPs provide a new avenue in retinal prosthetics with potential applications not only in retinitis pigmentosa, but also in age-related macular degeneration.


Asunto(s)
Puntos Cuánticos , Retina/efectos de los fármacos , Retinitis Pigmentosa/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Inyecciones Intraoculares , Masculino , Estimulación Luminosa , Polímeros/administración & dosificación , Polímeros/farmacología , Puntos Cuánticos/administración & dosificación , Puntos Cuánticos/uso terapéutico , Ratas , Ratas Sprague-Dawley , Corteza Visual/efectos de los fármacos , Corteza Visual/metabolismo , Prótesis Visuales
18.
PLoS One ; 15(6): e0234145, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32497126

RESUMEN

Oxidative stress and inflammation determine retinal ganglion cell degeneration, leading to retinal impairment and vision loss. Müller glial cells regulate retinal repair under injury, through gliosis. Meanwhile, reactive gliosis can turn in pathological effects, contributing to neurodegeneration. In the present study, we tested whether Cord Blood Serum (CBS), rich of growth factors, might improve the viability of Müller cells under in vitro damage. BDNF, NGF, TGF-α, GDNF and EGF levels were measured in CBS samples by Human Magnetic Luminex Assay. CBS effects were evaluated on rat (rMC-1) and human (MIO-M1) Müller cells, under H2O2 and IL-1ß damage. Cells grown with FBS or CBS both at 5% were exposed to stress and analyzed in terms of cell viability, GFAP, IL-6 and TNF-α expression. CBS was also administrated after treatment with K252a, inhibitor of the neurotrophin receptor Trk. Cell viability of rMC-1 and MIO-M1 resulted significantly improved when pretreated with CBS and exposed to H2O2 and IL-1ß, in comparison to the standard culture with FBS. Accordingly, the gliosis marker GFAP resulted down-regulated following CBS priming. In parallel, we observed a lower expression of the inflammatory mediators in rMC-1 (TNF-α) and MIO-M1 (IL-6, TNF- α), especially in presence of inflammatory damage. Trk inhibition through K252a administration impaired the effects of CBS under stress conditions on MIO-M1 and rMC-1 viability, not significantly different from FBS condition. CBS is enriched with neurotrophins and its administration to rMC-1 and MIO-M1 attenuates the cytotoxic effects of H2O2 and IL-1ß. Moreover, the decrease of the main markers of gliosis and inflammation suggests a promising use of CBS for neuroprotection aims. This study is a preliminary basis that prompts future investigations to deeply explore and confirm the CBS potential.


Asunto(s)
Células Ependimogliales/citología , Células Ependimogliales/efectos de los fármacos , Sangre Fetal/metabolismo , Suero/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Ependimogliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Estrés Oxidativo/efectos de los fármacos , Polisacáridos/metabolismo , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
19.
Biomolecules ; 10(5)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354031

RESUMEN

Age-related macular degeneration (AMD) is one of the leading causes of visual loss in western countries, it has no cure, and its incidence will grow in the future, for the overall population aging. Albino rats with retinal degeneration induced by exposure to high-intensity light (light-damage, LD) have been extensively used as a model of AMD to test neuroprotective agents. Among them, trophic factors (NGF and BDNF) have been shown to play a significant role in photoreceptors' survival. Interestingly, cord blood serum (CBS) is an extract full of chemokines and trophic factors; we, therefore, hypothesized that CBS could be an excellent candidate for neuroprotection. Here, we investigate whether CBS-based eye drops might mitigate the effects of light-induced retinal degeneration in albino rats. CBS treatment significantly preserved flash-electroretinogram (f-ERG) response after LD and reduced the "hot-spot" extension. Besides, CBS-treated animals better preserved the morphology of the outer nuclear layer, together with a reduction in microglia migration and activation. Interestingly, the treatment did not modulate reactive gliosis and activation of the self-protective mechanism (FGF2). In conclusion, our results suggest that CBS-based eye drops might be successfully used to mitigate retinal neurodegenerative processes such as AMD.


Asunto(s)
Sangre Fetal/química , Degeneración Macular/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Soluciones Oftálmicas/farmacología , Células Fotorreceptoras/efectos de los fármacos , Animales , Factor de Crecimiento Epidérmico/análisis , Factor de Crecimiento Epidérmico/farmacología , Femenino , Humanos , Interleucinas/análisis , Interleucinas/farmacología , Luz/efectos adversos , Degeneración Macular/etiología , Microglía/efectos de los fármacos , Factores de Crecimiento Nervioso/análisis , Factores de Crecimiento Nervioso/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Soluciones Oftálmicas/química , Soluciones Oftálmicas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Suero/química
20.
Nutrients ; 11(10)2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618812

RESUMEN

Retinal oxidative damage, associated with an ATP-binding cassette, sub-family A, member 4, also known as ABCA4 gene mutation, has been implicated as a major underlying mechanism for Stargardt disease/fundus flavimaculatus (STG/FF). Recent findings indicate that saffron carotenoid constituents crocins and crocetin may counteract retinal oxidative damage, inflammation and protect retinal cells from apoptosis. This pilot study aimed to evaluate central retinal function following saffron supplementation in STG/FF patients carrying ABCA4 mutations. METHODS: in a randomized, double-blind, placebo-controlled study (clinicaltrials.gov: NCT01278277), 31 patients with ABCA4-related STG/FF and a visual acuity >0.25 were randomly assigned to assume oral saffron (20 mg) or placebo over a six month period and then reverted to P or S for a further six month period. Full ophthalmic examinations, as well as central 18° focal electroretinogram (fERG) recordings, were performed at baseline and after six months of either saffron or placebo. The fERG fundamental harmonic component was isolated by Fourier analysis. Main outcome measures were fERG amplitude (in µV) and phase (in degrees). The secondary outcome measure was visual acuity. RESULTS: supplement was well tolerated by all patients throughout follow-up. After saffron, fERG amplitude was unchanged; after placebo, amplitude tended to decrease from baseline (mean change: -0.18 log µV, p < 0.05). Reverting the treatments, amplitude did not change significantly. fERG phase and visual acuity were unchanged throughout follow-up. CONCLUSIONS: short-term saffron supplementation was well tolerated and had no detrimental effects on the electroretinographic responses of the central retina and visual acuity. The current findings warrant further long-term clinical trials to assess the efficacy of saffron supplementation in slowing down the progression of central retinal dysfunction in ABCA4-related STG/FF.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Antioxidantes/administración & dosificación , Crocus , Suplementos Dietéticos , Mutación , Estrés Oxidativo/efectos de los fármacos , Retina/efectos de los fármacos , Enfermedad de Stargardt/tratamiento farmacológico , Agudeza Visual/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/metabolismo , Administración Oral , Adolescente , Adulto , Anciano , Antioxidantes/efectos adversos , Niño , Estudios Cruzados , Suplementos Dietéticos/efectos adversos , Método Doble Ciego , Electrorretinografía , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Proyectos Piloto , Estudios Prospectivos , Retina/metabolismo , Retina/fisiopatología , Enfermedad de Stargardt/diagnóstico , Enfermedad de Stargardt/genética , Enfermedad de Stargardt/fisiopatología , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA