Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Amino Acids ; 52(4): 629-638, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32246211

RESUMEN

Hypermethioninemia is a disorder characterized by high plasma levels of methionine (Met) and its metabolites such as methionine sulfoxide (MetO). Studies have reported associated inflammatory complications, but the mechanisms involved in the pathophysiology of hypermethioninemia are still uncertain. The present study aims to evaluate the effect of chronic administration of Met and/or MetO on phenotypic characteristics of macrophages, in addition to oxidative stress, purinergic system, and inflammatory mediators in macrophages. In this study, Swiss male mice were subcutaneously injected with Met and MetO at concentrations of 0.35-1.2 g/kg body weight and 0.09-0.3 g/kg body weight, respectively, from the 10th-38th day post-birth, while the control group was treated with saline solution. The results revealed that Met and/or MetO induce an M1/classical activation phenotype associated with increased levels of tumor necrosis factor alpha and nitrite, and reduced arginase activity. It was also found that Met and/or MetO alter the activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, as well as the levels of thiol and reactive oxygen species in macrophages. The chronic administration of Met and/or MetO also promotes alteration in the hydrolysis of ATP and ADP, as indicated by the increased activity of ectonucleotidases. These results demonstrate that chronic administration of Met and/or MetO promotes activated pro-inflammatory profile by inducing M1/classical macrophage polarization. Thus, the changes in redox status and purinergic system upon chronic Met and/or MetO exposure may contribute towards better understanding of the alterations consistent with hypermethioninemic patients.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/inmunología , Glicina N-Metiltransferasa/deficiencia , Macrófagos/inmunología , Metionina/análogos & derivados , Animales , Catalasa/metabolismo , Polaridad Celular , Glutatión Peroxidasa/metabolismo , Glicina N-Metiltransferasa/inmunología , Macrófagos/efectos de los fármacos , Masculino , Metionina/administración & dosificación , Metionina/metabolismo , Metionina/farmacología , Ratones , Oxidación-Reducción , Estrés Oxidativo , Fenotipo , Superóxido Dismutasa/metabolismo
2.
Mol Cell Biochem ; 424(1-2): 69-78, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27752805

RESUMEN

Methionine is an essential amino acid involved in critical metabolic process, and regulation of methionine flux through metabolism is important to supply this amino acid for cell needs. Elevation in plasma methionine commonly occurs due to mutations in methionine-metabolizing enzymes, such as methionine adenosyltransferase. Hypermethioninemic patients exhibit clinical manifestations, including neuronal and liver disorders involving inflammation and tissue injury, which pathophysiology is not completely established. Here, we hypothesize that alterations in macrophage inflammatory response may contribute to deleterious effects of hypermethioninemia. To this end, macrophage primary cultures were exposed to methionine (1 mM) and/or its metabolite methionine sulfoxide (0.5 mM), and M1/proinflammatory or M2/anti-inflammatory macrophage polarization was evaluated. In addition, inflammation-related pathways including oxidative stress parameters, as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities; reactive oxygen species (ROS) production, and purinergic signaling, as ATP/ADP/AMPase activities, were investigated. Methionine and/or methionine sulfoxide induced M1/classical macrophage activation, which is related to proinflammatory responses characterized by increased iNOS activity and TNF-α release. Further experiments showed that treatments promoted alterations on redox state of macrophages by differentially modulated SOD and CAT activities and ROS levels. Finally, methionine and/or methionine sulfoxide treatment also altered the extracellular nucleotide metabolism, promoting an increase of ATPase/ADPase activities in macrophages. In conclusion, these findings contribute to better understand the participation of proinflammatory responses in cell injury observed in hypermethioninemic patients.


Asunto(s)
Macrófagos/metabolismo , Metionina/análogos & derivados , Metionina/farmacología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Masculino , Ratones , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...