Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 24(8): 102841, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34381968

RESUMEN

Current studies estimate that 1-3% of females with unexplained intellectual disability (ID) present de novo splice site, nonsense, frameshift, or missense mutations in the DDX3X protein (DEAD-Box Helicase 3 X-Linked). However, the cellular and molecular mechanisms by which DDX3X mutations impair brain development are not fully comprehended. Here, we show that the ID-linked missense mutation L556S renders DDX3X prone to aggregation. By using a combination of biophysical assays and imaging approaches, we demonstrate that this mutant assembles solid-like condensates and amyloid-like fibrils. Although we observed greatly reduced expression of the mutant allele in a patient who exhibits skewed X inactivation, this appears to be enough to sequestrate healthy proteins into solid-like ectopic granules, compromising cell function. Therefore, our data suggest ID-linked DDX3X L556S mutation as a disorder arising from protein misfolding and aggregation.

2.
Nat Chem Biol ; 15(1): 62-70, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30531907

RESUMEN

Ubiquitin-conjugating enzymes (E2) enable protein ubiquitination by conjugating ubiquitin to their catalytic cysteine for subsequent transfer to a target lysine side chain. Deprotonation of the incoming lysine enables its nucleophilicity, but determinants of lysine activation remain poorly understood. We report a novel pathogenic mutation in the E2 UBE2A, identified in two brothers with mild intellectual disability. The pathogenic Q93E mutation yields UBE2A with impaired aminolysis activity but no loss of the ability to be conjugated with ubiquitin. Importantly, the low intrinsic reactivity of UBE2A Q93E was not overcome by a cognate ubiquitin E3 ligase, RAD18, with the UBE2A target PCNA. However, UBE2A Q93E was reactive at high pH or with a low-pKa amine as the nucleophile, thus providing the first evidence of reversion of a defective UBE2A mutation. We propose that Q93E substitution perturbs the UBE2A catalytic microenvironment essential for lysine deprotonation during ubiquitin transfer, thus generating an enzyme that is disabled but not dead.


Asunto(s)
Discapacidad Intelectual/genética , Mutación Missense , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Adulto , Dominio Catalítico , Cristalografía por Rayos X , Femenino , Humanos , Concentración de Iones de Hidrógeno , Lisina/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
3.
Plant Cell ; 26(11): 4245-69, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25371547

RESUMEN

Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.


Asunto(s)
Agaricales/fisiología , Cacao/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Transcriptoma , Agaricales/patogenicidad , Secuencia de Bases , Cacao/citología , Cacao/microbiología , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Biológicos , Datos de Secuencia Molecular , Micelio , Fotosíntesis , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA