Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protoplasma ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467939

RESUMEN

The genus Vigna (Leguminosae) comprises about 150 species grouped into five subgenera. The present study aimed to improve the understanding of karyotype diversity and evolution in Vigna, using new and previously published data through different cytogenetic and DNA content approaches. In the Vigna subgenera, we observed a random distribution of rDNA patterns. The 35S rDNA varied in position, from terminal to proximal, and in number, ranging from one (V. aconitifolia, V. subg. Ceratotropis) to seven pairs (V. unguiculata subsp. unguiculata, V. subg. Vigna). On the other hand, the number of 5S rDNA was conserved (one or two pairs), except for V. radiata (V. subg. Ceratotropis), which had three pairs. Genome size was relatively conserved within the genus, ranging from 1C = 0.43 to 0.70 pg in V. oblongifolia and V. unguiculata subsp. unguiculata, respectively, both belonging to V. subg. Vigna. However, we observed a positive correlation between DNA content and the number of 35S rDNA sites. In addition, data from chromosome-specific BAC-FISH suggest that the ancestral 35S rDNA locus is conserved on chromosome 6 within Vigna. Considering the rapid diversification in the number and position of rDNA sites, such conservation is surprising and suggests that additional sites may have spread out from this ancestral locus.

2.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38340334

RESUMEN

Fishes of the genus Carassius are useful experimental vertebrate models for the study of evolutionary biology and cytogenetics. Carassius demonstrates diverse biological characteristics, such as variation in ploidy levels and chromosome numbers, and presence of microchromosomes. Those Carassius polyploids with ≥150 chromosomes have microchromosomes, but the origin of microchromosomes, especially in European populations, is unknown. We used cytogenetics to study evolution of tandem repeats (U1 and U2 small nuclear DNAs and H3 histone) and microchromosomes in Carassius from the Czech Republic. We tested the hypotheses whether the number of tandem repeats was affected by polyploidization or divergence between species and what mechanism drives evolution of microchromosomes. Tandem repeats were found in tetraploid and hexaploid Carassius gibelio, and tetraploid Carassius auratus and Carassius carassius in conserved numbers, with the exception of U1 small nuclear DNA in C. auratus. This conservation indicates reduction and/or loss in the number of copies per locus in hexaploids and may have occurred by divergence rather than polyploidization. To study the evolution of microchromosomes, we used the whole microchromosome painting probe from hexaploid C. gibelio and hybridized it to tetraploid and hexaploid C. gibelio, and tetraploid C. auratus and C. carassius. Our results revealed variation in the number of microchromosomes in hexaploids and indicated that the evolution of the Carassius karyotype is governed by macrochromosome fissions followed by segmental duplication in pericentromeric areas. These are potential mechanisms responsible for the presence of microchromosomes in Carassius hexaploids. Differential efficacy of one or both of these mechanisms in different tetraploids could ensure variability in chromosome number in polyploids in general.


Asunto(s)
Cyprinidae , Duplicaciones Segmentarias en el Genoma , Animales , Tetraploidía , Análisis Citogenético , Secuencias Repetidas en Tándem , Poliploidía
3.
Theor Appl Genet ; 137(1): 29, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261028

RESUMEN

KEY MESSAGE: Inversions and translocations are the major chromosomal rearrangements involved in Vigna subgenera evolution, being Vigna vexillata the most divergent species. Centromeric repositioning seems to be frequent within the genus. Oligonucleotide-based fluorescence in situ hybridization (Oligo-FISH) provides a powerful chromosome identification system for inferring plant chromosomal evolution. Aiming to understand macrosynteny, chromosomal diversity, and the evolution of bean species from five Vigna subgenera, we constructed cytogenetic maps for eight taxa using oligo-FISH-based chromosome identification. We used oligopainting probes from chromosomes 2 and 3 of Phaseolus vulgaris L. and two barcode probes designed from V. unguiculata (L.) Walp. genome. Additionally, we analyzed genomic blocks among the Ancestral Phaseoleae Karyotype (APK), two V. unguiculata subspecies (V. subg. Vigna), and V. angularis (Willd.) Ohwi & Ohashi (V. subg. Ceratotropis). We observed macrosynteny for chromosomes 2, 3, 4, 6, 7, 8, 9, and 10 in all investigated taxa except for V. vexillata (L.) A. Rich (V. subg. Plectrotropis), in which only chromosomes 4, 7, and 9 were unambiguously identified. Collinearity breaks involved with chromosomes 2 and 3 were revealed. We identified minor differences in the painting pattern among the subgenera, in addition to multiple intra- and interblock inversions and intrachromosomal translocations. Other rearrangements included a pericentric inversion in chromosome 4 (V. subg. Vigna), a reciprocal translocation between chromosomes 1 and 5 (V. subg. Ceratotropis), a potential deletion in chromosome 11 of V. radiata (L.) Wilczek, as well as multiple intrablock inversions and centromere repositioning via genomic blocks. Our study allowed the visualization of karyotypic patterns in each subgenus, revealing important information for understanding intrageneric karyotypic evolution, and suggesting V. vexillata as the most karyotypically divergent species.


Asunto(s)
Phaseolus , Vigna , Vigna/genética , Hibridación Fluorescente in Situ , Translocación Genética , Reordenamiento Génico , Phaseolus/genética
4.
Chromosome Res ; 30(4): 477-492, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35715657

RESUMEN

The tribe Phaseoleae includes several legume crops with assembled genomes. Comparative genomic studies have evidenced the preservation of large genomic blocks among legumes, although chromosome dynamics during Phaseoleae evolution has not been investigated. We conducted a comparative genomic analysis to define an informative genomic block (GB) system and to reconstruct the ancestral Phaseoleae karyotype (APK). We identified GBs based on the orthologous genes between Phaseolus vulgaris and Vigna unguiculata and searched for GBs in different genomes of the Phaseolinae (P. lunatus) and Glycininae (Amphicarpaea edgeworthii) subtribes and Spatholobus suberectus (sister to Phaseolinae and Glycininae), using Medicago truncatula as the outgroup. We also used oligo-FISH probes of two P. vulgaris chromosomes to paint the orthologous chromosomes of two non-sequenced Phaseolinae species. We inferred the APK as having n = 11 and 19 GBs (A to S), hypothesizing five chromosome fusions that reduced the ancestral legume karyotype to n = 11. We identified the rearrangements among the APK and the subtribes and species, with extensive centromere repositioning in Phaseolus. We also reconstructed the chromosome number reduction in S. suberectus. The development of the GB system and the proposed APK provide useful approaches for future comparative genomic analyses of legume species.


Asunto(s)
Genoma , Phaseolus , Centrómero/genética , Cariotipo , Phaseolus/genética , Cariotipificación , Genoma de Planta , Evolución Molecular
5.
Theor Appl Genet ; 134(11): 3675-3686, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34368889

RESUMEN

KEY MESSAGE: An Oligo-FISH barcode system was developed for two model legumes, allowing the identification of all cowpea and common bean chromosomes in a single FISH experiment, and revealing new chromosome rearrangements. The FISH barcode system emerges as an effective tool to understand the chromosome evolution of economically important legumes and their related species. Current status on plant cytogenetic and cytogenomic research has allowed the selection and design of oligo-specific probes to individually identify each chromosome of the karyotype in a target species. Here, we developed the first chromosome identification system for legumes based on oligo-FISH barcode probes. We selected conserved genomic regions between Vigna unguiculata (Vu, cowpea) and Phaseolus vulgaris (Pv, common bean) (diverged ~ 9.7-15 Mya), using cowpea as a reference, to produce a unique barcode pattern for each species. We combined our oligo-FISH barcode pattern with a set of previously developed FISH probes based on BACs and ribosomal DNA sequences. In addition, we integrated our FISH maps with genome sequence data. Based on this integrated analysis, we confirmed two translocation events (involving chromosomes 1, 5, and 8; and chromosomes 2 and 3) between both species. The application of the oligo-based probes allowed us to demonstrate the participation of chromosome 5 in the translocation complex for the first time. Additionally, we detailed a pericentric inversion on chromosome 4 and identified a new paracentric inversion on chromosome 10. We also detected centromere repositioning associated with chromosomes 2, 3, 5, 7, and 9, confirming previous results for chromosomes 2 and 3. This first barcode system for legumes can be applied for karyotyping other Phaseolinae species, especially non-model, orphan crop species lacking genomic assemblies and cytogenetic maps, expanding our understanding of the chromosome evolution and genome organization of this economically important legume group.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Hibridación Fluorescente in Situ , Cariotipificación/métodos , Phaseolus/genética , Vigna/genética , Centrómero , Cromosomas de las Plantas/genética , Sondas Moleculares
6.
Chromosoma ; 130(2-3): 133-147, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33909141

RESUMEN

Cytogenomic resources have accelerated synteny and chromosome evolution studies in plant species, including legumes. Here, we established the first cytogenetic map of V. angularis (Va, subgenus Ceratotropis) and compared this new map with those of V. unguiculata (Vu, subgenus Vigna) and P. vulgaris (Pv) by BAC-FISH and oligopainting approaches. We mapped 19 Vu BACs and 35S rDNA probes to the 11 chromosome pairs of Va, Vu, and Pv. Vigna angularis shared a high degree of macrosynteny with Vu and Pv, with five conserved syntenic chromosomes. Additionally, we developed two oligo probes (Pv2 and Pv3) used to paint Vigna orthologous chromosomes. We confirmed two reciprocal translocations (chromosomes 2 and 3 and 1 and 8) that have occurred after the Vigna and Phaseolus divergence (~9.7 Mya). Besides, two inversions (2 and 4) and one translocation (1 and 5) have occurred after Vigna and Ceratotropis subgenera separation (~3.6 Mya). We also observed distinct oligopainting patterns for chromosomes 2 and 3 of Vigna species. Both Vigna species shared similar major rearrangements compared to Pv: one translocation (2 and 3) and one inversion (chromosome 3). The sequence synteny identified additional inversions and/or intrachromosomal translocations involving pericentromeric regions of both orthologous chromosomes. We propose chromosomes 2 and 3 as hotspots for chromosomal rearrangements and de novo centromere formation within and between Vigna and Phaseolus. Our BAC- and oligo-FISH mapping contributed to physically trace the chromosome evolution of Vigna and Phaseolus and its application in further studies of both genera.


Asunto(s)
Phaseolus , Vigna , Cromosomas de las Plantas/genética , Phaseolus/genética , Sintenía , Translocación Genética , Vigna/genética
7.
Methods Mol Biol ; 2148: 71-83, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32394375

RESUMEN

Efficient and consistent chromosome identification is the foundation for successful cytogenetic studies. Fluorescent in situ hybridization (FISH) has been the most popular technique for chromosome identification in plants. Large insert genomic DNA clones, such as bacterial artificial chromosome (BAC) clones, and repetitive DNA sequences have been the most commonly used DNA probes for FISH. However, most of such traditional probes can only be used to identify a single chromosome or are too polymorphic to consistently identify the same chromosome in the target species. In contrast, FISH using oligonucleotide (oligo)-based probes is highly versatile. In this procedure, a large number of oligos specific to a chromosomal region, to an entire chromosome, or to multiple chromosomes are computationally identified, synthesized in parallel, and labeled as probes. In addition, each oligo probe can be used for thousands of FISH experiments and represents an infinite resource. In this chapter we describe a detailed protocol for amplification and labeling of oligo-based probes, relevant chromosome preparation, and FISH procedures.


Asunto(s)
Pintura Cromosómica/métodos , Sondas de ADN/genética , Hibridación Fluorescente in Situ/métodos , Sondas de Oligonucleótidos/genética , Cromosomas Artificiales Bacterianos/genética , Humanos , Secuencias Repetitivas de Ácidos Nucleicos
8.
Chromosome Res ; 28(2): 183-194, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32219602

RESUMEN

Maize was one of the first eukaryotic species in which individual chromosomes can be identified cytologically, which made maize one of the oldest models for genetics and cytogenetics research. Nevertheless, consistent identification of all 10 chromosomes from different maize lines as well as from wild Zea species remains a challenge. We developed a new technique for maize chromosome identification based on fluorescence in situ hybridization (FISH). We developed two oligonucleotide-based probes that hybridize to 24 chromosomal regions. Individual maize chromosomes show distinct FISH signal patterns, which allow universal identification of all chromosomes from different Zea species. We developed karyotypes from three Zea mays subspecies and two additional wild Zea species based on individually identified chromosomes. A paracentric inversion was discovered on the long arm of chromosome 4 in Z. nicaraguensis and Z. luxurians based on modifications of the FISH signal patterns. Chromosomes from these two species also showed distinct distribution patterns of terminal knobs compared with other Zea species. These results support that Z. nicaraguensis and Z. luxurians are closely related species.


Asunto(s)
Cromosomas de las Plantas , Citogenética , Cariotipificación , Zea mays/clasificación , Zea mays/genética , Inversión Cromosómica , Citogenética/métodos , Hibridación Fluorescente in Situ , Cariotipificación/métodos , Sondas de Oligonucleótidos
9.
Nat Commun ; 10(1): 4604, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601818

RESUMEN

Meiotic crossovers (COs) play a critical role in generating genetic variation and maintaining faithful segregation of homologous chromosomes during meiosis. We develop a haplotype-specific fluorescence in situ hybridization (FISH) technique that allows visualization of COs directly on metaphase chromosomes. Oligonucleotides (oligos) specific to chromosome 10 of maize inbreds B73 and Mo17, respectively, are synthesized and labeled as FISH probes. The parental and recombinant chromosome 10 in B73 x Mo17 F1 hybrids and F2 progenies can be unambiguously identified by haplotype-specific FISH. Analysis of 58 F2 plants reveals lack of COs in the entire proximal half of chromosome 10. However, we detect COs located in regions very close to the centromere in recombinant inbred lines from an intermated B73 x Mo17 population, suggesting effective accumulation of COs in recombination-suppressed chromosomal regions through intermating and the potential to generate favorable allelic combinations of genes residing in these regions.


Asunto(s)
Pintura Cromosómica/métodos , Intercambio Genético , Haplotipos/genética , Meiosis , Zea mays/genética , Cromosomas de las Plantas , Hibridación Fluorescente in Situ , Oligonucleótidos/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...