Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 18(4): e0012092, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578808

RESUMEN

Madurella mycetomatis is the main cause of mycetoma, a chronic granulomatous infection for which currently no adequate therapy is available. To improve therapy, more knowledge on a molecular level is required to understand how M. mycetomatis is able to cause this disease. However, the genetic toolbox for M. mycetomatis is limited. To date, no method is available to genetically modify M. mycetomatis. In this paper, a protoplast-mediated transformation protocol was successfully developed for this fungal species, using hygromycin as a selection marker. Furthermore, using this method, a cytoplasmic-GFP-expressing M. mycetomatis strain was created. The reported methodology will be invaluable to explore the pathogenicity of M. mycetomatis and to develop reporter strains which can be useful in drug discovery as well as in genetic studies.


Asunto(s)
Higromicina B , Madurella , Protoplastos , Transformación Genética , Higromicina B/farmacología , Higromicina B/análogos & derivados , Madurella/genética , Madurella/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Micetoma/microbiología , Micetoma/tratamiento farmacológico , Cinamatos/farmacología
2.
J Fungi (Basel) ; 6(2)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290206

RESUMEN

The first characterized antifungal in the orotomide class is olorofim. It targets the de novo pyrimidine biosynthesis pathway by inhibiting dihydroorotate dehydrogenase (DHODH). The pyrimidines uracil, thymine and cytosine are the building blocks of DNA and RNA; thus, inhibition of their synthesis is likely to have multiple effects, including affecting cell cycle regulation and protein synthesis. Additionally, uridine-5'-triphosphate (UTP) is required for the formation of uridine-diphosphate glucose (UDP-glucose), which is an important precursor for several cell wall components. In this study, the dynamic effects of olorofim treatment on the morphology and organization of Aspergillus fumigatus hyphae were analyzed microscopically using confocal live-cell imaging. Treatment with olorofim led to increased chitin content in the cell wall, increased septation, enlargement of vacuoles and inhibition of mitosis. Furthermore, vesicle-like structures, which could not be stained or visualized with a range of membrane- or vacuole-selective dyes, were found in treated hyphae. A colocalization study of DHODH and MitoTracker Red FM confirmed for the first time that A. fumigatus DHODH is localized in the mitochondria. Overall, olorofim treatment was found to significantly influence the dynamic structure and organization of A. fumigatus hyphae.

3.
Artículo en Inglés | MEDLINE | ID: mdl-29891595

RESUMEN

F901318 (olorofim) is a novel antifungal drug that is highly active against Aspergillus species. Belonging to a new class of antifungals called the orotomides, F901318 targets dihydroorotate dehydrogenase (DHODH) in the de novo pyrimidine biosynthesis pathway. In this study, the antifungal effects of F901318 against Aspergillus fumigatus were investigated. Live cell imaging revealed that, at a concentration of 0.1 µg/ml, F901318 completely inhibited germination, but conidia continued to expand by isotropic growth for >120 h. When this low F901318 concentration was applied to germlings or vegetative hyphae, their elongation was completely inhibited within 10 h. Staining with the fluorescent viability dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC) showed that prolonged exposure to F901318 (>24 h) led to vegetative hyphal swelling and a decrease in hyphal viability through cell lysis. The time-dependent killing of F901318 was further confirmed by measuring the fungal biomass and growth rate in liquid culture. The ability of hyphal growth to recover in drug-free medium after 24 h of exposure to F901318 was strongly impaired compared to that of the untreated control. A longer treatment of 48 h further improved the antifungal effect of F901318. Together, the results of this study indicate that F901318 initially has a fungistatic effect on Aspergillus isolates by inhibiting germination and growth, but prolonged exposure is fungicidal through hyphal swelling followed by cell lysis.


Asunto(s)
Acetamidas/farmacología , Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Hifa/efectos de los fármacos , Piperazinas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Esporas Fúngicas/efectos de los fármacos , Aspergillus fumigatus/crecimiento & desarrollo , Aspergillus fumigatus/ultraestructura , Medios de Cultivo/química , Hifa/crecimiento & desarrollo , Hifa/ultraestructura , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/ultraestructura
4.
FEBS Lett ; 591(10): 1408-1418, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28417461

RESUMEN

In Aspergillus niger, the enzymes encoded by gaaA, gaaB, and gaaC catabolize d-galacturonic acid (GA) consecutively into l-galactonate, 2-keto-3-deoxy-l-galactonate, pyruvate, and l-glyceraldehyde, while GaaD converts l-glyceraldehyde to glycerol. Deletion of gaaB or gaaC results in severely impaired growth on GA and accumulation of l-galactonate and 2-keto-3-deoxy-l-galactonate, respectively. Expression levels of GA-responsive genes are specifically elevated in the ∆gaaC mutant on GA as compared to the reference strain and other GA catabolic pathway deletion mutants. This indicates that 2-keto-3-deoxy-l-galactonate is the inducer of genes required for GA utilization.


Asunto(s)
Aspergillus niger/crecimiento & desarrollo , Proteínas Fúngicas/genética , Azúcares Ácidos/metabolismo , Aspergillus niger/enzimología , Aspergillus niger/genética , Proteínas Fúngicas/metabolismo , Regulación Enzimológica de la Expresión Génica , Redes y Vías Metabólicas , Mutación
5.
Proc Natl Acad Sci U S A ; 113(45): 12809-12814, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791100

RESUMEN

There is an important medical need for new antifungal agents with novel mechanisms of action to treat the increasing number of patients with life-threatening systemic fungal disease and to overcome the growing problem of resistance to current therapies. F901318, the leading representative of a novel class of drug, the orotomides, is an antifungal drug in clinical development that demonstrates excellent potency against a broad range of dimorphic and filamentous fungi. In vitro susceptibility testing of F901318 against more than 100 strains from the four main pathogenic Aspergillus spp. revealed minimal inhibitory concentrations of ≤0.06 µg/mL-greater potency than the leading antifungal classes. An investigation into the mechanism of action of F901318 found that it acts via inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) in a fungal-specific manner. Homology modeling of Aspergillus fumigatus DHODH has identified a predicted binding mode of the inhibitor and important interacting amino acid residues. In a murine pulmonary model of aspergillosis, F901318 displays in vivo efficacy against a strain of A. fumigatus sensitive to the azole class of antifungals and a strain displaying an azole-resistant phenotype. F901318 is currently in late Phase 1 clinical trials, offering hope that the antifungal armamentarium can be expanded to include a class of agent with a mechanism of action distinct from currently marketed antifungals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...