Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18459, 2024 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-39117682

RESUMEN

High dose-rate brachytherapy is a treatment technique for gynecologic cancers where intracavitary applicators are placed within the patient's pelvic cavity. To ensure accurate radiation delivery, localization of the applicator at the time of insertion is vital. This study proposes a novel method for acquiring, registering, and fusing three-dimensional (3D) trans-abdominal and 3D trans-rectal ultrasound (US) images for visualization of the pelvic anatomy and applicators during gynecologic brachytherapy. The workflow was validated using custom multi-modal pelvic phantoms and demonstrated during two patient procedures. Experiments were performed for three types of intracavitary applicators: ring-and-tandem, ring-and-tandem with interstitial needles, and tandem-and-ovoids. Fused 3D US images were registered to magnetic resonance (MR) and computed tomography (CT) images for validation. The target registration error (TRE) and fiducial localization error (FLE) were calculated to quantify the accuracy of our fusion technique. For both phantom and patient images, TRE and FLE across all modality registrations (3D US versus MR or CT) resulted in mean ± standard deviation of 4.01 ± 1.01 mm and 0.43 ± 0.24 mm, respectively. This work indicates proof of concept for conducting further clinical studies leveraging 3D US imaging as an accurate, accessible alternative to advanced modalities for localizing brachytherapy applicators.


Asunto(s)
Braquiterapia , Imagenología Tridimensional , Fantasmas de Imagen , Ultrasonografía , Humanos , Braquiterapia/métodos , Femenino , Imagenología Tridimensional/métodos , Ultrasonografía/métodos , Neoplasias de los Genitales Femeninos/radioterapia , Neoplasias de los Genitales Femeninos/diagnóstico por imagen , Radioterapia Guiada por Imagen/métodos , Recto/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Prueba de Estudio Conceptual , Imagen por Resonancia Magnética/métodos , Abdomen/diagnóstico por imagen , Pelvis/diagnóstico por imagen
2.
Med Phys ; 51(2): 1092-1104, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37493097

RESUMEN

BACKGROUND: Synovitis is one of the defining characteristics of osteoarthritis (OA) in the carpometacarpal (CMC1) joint of the thumb. Quantitative characterization of synovial volume is important for furthering our understanding of CMC1 OA disease progression, treatment response, and monitoring strategies. In previous studies, three-dimensional ultrasound (3-D US) has demonstrated the feasibility of being a point-of-care system for monitoring knee OA. However, 3-D US has not been tested on the smaller joints of the hand, which presents unique physiological and imaging challenges. PURPOSE: To develop and validate a novel application of 3-D US to monitor soft-tissue characteristics of OA in a CMC1 OA patient population compared to the current gold standard, magnetic resonance imaging (MRI). METHODS: A motorized submerged transducer moving assembly was designed for this device specifically for imaging the joints of the hands and wrist. The device used a linear 3-D scanning approach, where a 14L5 2-D transducer was translated over the region of interest. Two imaging phantoms were used to test the linear and volumetric measurement accuracy of the 3-D US device. To evaluate the accuracy of the reconstructed 3-D US geometry, a multilayer monofilament string-grid phantom (10 mm square grid) was scanned. To validate the volumetric measurement capabilities of the system, a simulated synovial tissue phantom with an embedded synovial effusion was fabricated and imaged. Ten CMC1 OA patients were imaged by our 3-D US and a 3.0 T MRI system to compare synovial volumes. The synovial volumes were manually segmented by two raters on the 2D slices of the 3D US reconstruction and MR images, to assess the accuracy and precision of the device for determining synovial tissue volumes. The Standard Error of Measurement and Minimal Detectable Change was used to assess the precision and sensitivity of the volume measurements. Paired sample t-tests were used to assess statistical significance. Additionally, rater reliability was assessed using Intra-Class Correlation (ICC) coefficients. RESULTS: The largest percent difference observed between the known physical volume of synovial extrusion in the phantom and the volume measured by our 3D US was 1.1% (p-value = 0.03). The mean volume difference between the 3-D US and the gold standard MRI was 1.78% (p-value = 0.48). The 3-D US synovial tissue volume measurements had a Standard Error Measurement (SEm ) of 11.21 mm3 and a Minimal Detectible Change (MDC) of 31.06 mm3 , while the MRI synovial tissue volume measurements had an SEM of 16.82 mm3 and an MDC of 46.63 mm3 . Excellent inter- and intra-rater reliability (ICCs = 0.94-0.99) observed across all imaging modalities and raters. CONCLUSION: Our results indicate the feasibility of applying 3-D US technology to provide accurate and precise CMC1 synovial tissue volume measurements, similar to MRI volume measurements. Lower MDC and SEm values for 3-D US volume measurements indicate that it is a precise measurement tool to assess synovial volume and that it is sensitive to variation between volume segmentations. The application of this imaging technique to monitor OA pathogenesis and treatment response over time at the patient's bedside should be thoroughly investigated in future studies.


Asunto(s)
Osteoartritis de la Rodilla , Sinovitis , Humanos , Estudios de Factibilidad , Reproducibilidad de los Resultados , Sinovitis/diagnóstico por imagen , Sinovitis/etiología , Sinovitis/patología , Membrana Sinovial/patología , Osteoartritis de la Rodilla/complicaciones , Osteoartritis de la Rodilla/patología , Imagen por Resonancia Magnética/métodos
3.
Osteoarthr Cartil Open ; 4(3): 100290, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36474947

RESUMEN

Objective: This study aimed to develop a deep learning-based approach to automatically segment the femoral articular cartilage (FAC) in 3D ultrasound (US) images of the knee to increase time efficiency and decrease rater variability. Design: Our method involved deep learning predictions on 2DUS slices sampled in the transverse plane to view the cartilage of the femoral trochlea, followed by reconstruction into a 3D surface. A 2D U-Net was modified and trained using a dataset of 200 2DUS images resliced from 20 3DUS images. Segmentation accuracy was evaluated using a holdout dataset of 50 2DUS images resliced from 5 3DUS images. Absolute and signed error metrics were computed and FAC segmentation performance was compared between rater 1 and 2 manual segmentations. Results: Our U-Net-based algorithm performed with mean 3D DSC, recall, precision, VPD, MSD, and HD of 73.1 â€‹± â€‹3.9%, 74.8 â€‹± â€‹6.1%, 72.0 â€‹± â€‹6.3%, 10.4 â€‹± â€‹6.0%, 0.3 â€‹± â€‹0.1 â€‹mm, and 1.6 â€‹± â€‹0.7 â€‹mm, respectively. Compared to the individual 2D predictions, our algorithm demonstrated a decrease in performance after 3D reconstruction, but these differences were not found to be statistically significant. The percent difference between the manually segmented volumes of the 2 raters was 3.4%, and rater 2 demonstrated the largest VPD with 14.2 â€‹± â€‹11.4 â€‹mm3 compared to 10.4 â€‹± â€‹6.0 â€‹mm3 for rater 1. Conclusion: This study investigated the use of a modified U-Net algorithm to automatically segment the FAC in 3DUS knee images of healthy volunteers, demonstrating that this segmentation method would increase the efficiency of anterior femoral cartilage volume estimation and expedite the post-acquisition processing for 3D US images of the knee.

4.
J Anat ; 241(4): 966-980, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35938671

RESUMEN

Ibises (order: Pelecaniformes, family: Threskiornithidae) are probe-foraging birds that use 'remote-touch' to locate prey items hidden in opaque substrates. This sensory capability allows them to locate their prey using high-frequency vibrations in the substrate in the absence of other sensory cues. Remote-touch is facilitated by a specialised bill-tip organ, comprising high densities of mechanoreceptors (Herbst corpuscles) embedded in numerous foramina in the beak bones. Each foramen and its associated Herbst corpuscles make up a sensory unit, called a 'sensory pit'. These sensory pits are densely clustered in the distal portion of the beak. Previous research has indicated that interspecific differences in the extent of sensory pitting in the beak bones correlate with aquatic habitat use of ibises, and have been suggested to reflect different levels of remote-touch sensitivity. Our study investigates the interspecific differences in the bone and soft tissue histology of the bill-tip organs of three species of southern African ibises from different habitats (mainly terrestrial to mainly aquatic). We analysed the external pitting pattern on the bones, as well as internal structure of the beak using micro-CT scans and soft tissue histological sections of each species' bill-tip organs. The beaks of all three species contain remote-touch bill-tip organs and are described here in detail. Clear interspecific differences are evident between the species' bill-tip organs, both in terms of bone morphology and soft tissue histology. Glossy Ibises, which forage exclusively in wetter substrates, have a greater extent of pitting but lower numbers of Herbst corpuscles in each pit, while species foraging in drier substrates (Hadeda and Sacred Ibises) have more robust beaks, fewer pits and higher densities of Herbst corpuscles. Our data, together with previously published histological descriptions of the bill-tip organs of other remote-touch foraging bird species, indicate that species foraging in drier habitats have more sensitive bill-tip organs (based on their anatomy). The vibrations produced by prey (e.g., burrowing invertebrates) travel poorly in dry substrates compared with wetter ones (i.e., dry soil vs. mud or water), and thus we hypothesise that a more sensitive bill-tip organ may be required to successfully locate prey in dry substrates. Furthermore, our results indicate that the differences in bill-tip organ anatomy between the species reflect complex trade-offs between morphological constraints of beak shape and remote-touch sensitivity requirements, both of which are likely related to each species' foraging behaviour and substrate usage. Our study suggests that structures in the bone of the bill-tip organ could provide valuable osteological correlates for the associated soft tissues, and consequently may provide information on the sensory ecology and habitat usage of the birds in the absence of soft tissues.


Asunto(s)
Pico/anatomía & histología , Aves/anatomía & histología , Tacto , África Austral , Animales , Pico/fisiología , Aves/fisiología , Mecanorreceptores/fisiología , Suelo , Tacto/fisiología , Vibración , Agua
5.
Ecol Evol ; 10(20): 11643-11656, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33144990

RESUMEN

"Islands of fertility" result from the focussing of water and nutrients around many shrub or tree species due to plants foraging for resources. Plant-animal feedbacks may amplify the development of such islands through environmental modification due to, for example, faunal deposition of nutrients and seeds. Fauna residing within vegetation clumps are likely to exert stronger feedbacks on their hosts than itinerant species. We studied the interaction between camel thorn trees (Vachellia erioloba) and the colonial nests of sociable weavers (Philetairus socius) in the Kalahari. We hypothesized that the accumulation of biological material below the nests will alter the nutrient status of the soil beneath the nest trees, in relation to unoccupied trees and the surrounding grassland. We also suggested that this association will have both positive and negative effects on the camel thorn trees. We found that soil concentrations of N, P, and K were, respectively, 4, 4.6, and 1.2 times higher below trees with nests compared to control trees, indicating faunal concentration of nutrients. Soil δ15N values were higher below trees with nests than below control trees without nests. Foliar δ15N values were also higher in nest trees than in control trees, showing the trees accessed faunally derived N. Furthermore, foliar biomass per diameter of terminal branches was 27% higher in nest trees, suggesting that trees respond to nutrient input from the weavers with increased growth. Large barren areas in the subcanopy vegetation directly beneath the colonies were attributed to decreased water infiltration rates, as a result of accumulation of organic matter due to continuous deposition of feces, possibly limiting competitive species from establishing in the subcanopy. On the other hand, canopy volume was reduced in trees with nests due to nests occupying large volumes within the canopy, and nests frequently causing branch fall, indicating costs associated with hosting weaver colonies. Synthesis: We found nutritional benefits to camel thorn trees when hosting sociable weaver colonies. These benefits can potentially overcome important environmental constraints, but these are partially offset by the resulting costs to the host trees.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA