Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | VETINDEX | ID: vti-443092

RESUMEN

Oxidative stress and proteases have been implicated in several diseases and extensive evidence indicates that antioxidants and protease inhibitors help prevent organ functional damage. Leiurus quinquestriatus (LQQ) scorpion venom causes cellular injuries that may lead to multiple organ failure. Thus, the capability of the antioxidant "natural standardized extract of Gingko biloba leaves (Gin, EGb 761)" and the non-selective protease inhibitor, aprotinin, in ameliorating venom-induced biochemical alterations indicative of cellular injury and oxidative stress was studied to determine their effectiveness in protecting rats from venom-evoked cellular damages. Thus, in this study, rats were treated with LQQ venom (0.3mg.kg-1, subcutaneously) alone or after Gin (150mg.kg-1, orally, daily for 2 weeks before venom) and/or aprotinin (Apr, 46000 KIU.kg-1, intraperitoneally, 30 min before venom). Control groups were injected with saline or treatment modalities. Lungs and hearts were excised after decapitating rats (n=8/group) 60 min after venom injection and the following activities were measured: reduced glutathione (GSH), malondialdehyde (MDA) - an index of lipid peroxidation, glutathione peroxidase (GPx), glucose-6-phosphate dehydrogenase (G6PD), and lactate dehydrogenase (LDH). Our findings demonstrate that LQQ venomsignificantly elevated GSH (p 0.05 vs. control), MDA (p 0.05), G6PD (p 0.05), and LDH activities (p 0.001) in hearts of envenomed rats. The venom also elevated MDA (p 0.05 vs. control) and reduced GSH and GPx (p 0.05) in the lungs of envenomed rats. In general, pretreatment with EGb761 attenuated LQQ venom-evoked increases in GSH (p 0.05 vs. venom), MDA in rat hearts and lungs (p 0.05 vs. venom), plus LDH in the heart (p 0.01). Aprotinin alone significantly reduced the venom-elicited increase in G6PD and LDH activities and the decrease in GPx levels (p 0.05). In general, these protective effects of EGb761 on GSH, MDA (p 0.01 vs. venom) and LDH (p 0.001) in the heart and/or lung were potentiated when combined with aprotinin. We concluded that the effectiveness of EGb761 and Apr in ameliorating venom-evoked biochemical changes indicative of necrosis and free radical generation point out the involvement of oxidative stress and proteases in venom-evoked cellular damages seen in this study in isolated rat hearts and lungs.

2.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;12(2)2006.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484430

RESUMEN

Oxidative stress and proteases have been implicated in several diseases and extensive evidence indicates that antioxidants and protease inhibitors help prevent organ functional damage. Leiurus quinquestriatus (LQQ) scorpion venom causes cellular injuries that may lead to multiple organ failure. Thus, the capability of the antioxidant "natural standardized extract of Gingko biloba leaves (Gin, EGb 761)" and the non-selective protease inhibitor, aprotinin, in ameliorating venom-induced biochemical alterations indicative of cellular injury and oxidative stress was studied to determine their effectiveness in protecting rats from venom-evoked cellular damages. Thus, in this study, rats were treated with LQQ venom (0.3mg.kg-1, subcutaneously) alone or after Gin (150mg.kg-1, orally, daily for 2 weeks before venom) and/or aprotinin (Apr, 46000 KIU.kg-1, intraperitoneally, 30 min before venom). Control groups were injected with saline or treatment modalities. Lungs and hearts were excised after decapitating rats (n=8/group) 60 min after venom injection and the following activities were measured: reduced glutathione (GSH), malondialdehyde (MDA) - an index of lipid peroxidation, glutathione peroxidase (GPx), glucose-6-phosphate dehydrogenase (G6PD), and lactate dehydrogenase (LDH). Our findings demonstrate that LQQ venomsignificantly elevated GSH (p 0.05 vs. control), MDA (p 0.05), G6PD (p 0.05), and LDH activities (p 0.001) in hearts of envenomed rats. The venom also elevated MDA (p 0.05 vs. control) and reduced GSH and GPx (p 0.05) in the lungs of envenomed rats. In general, pretreatment with EGb761 attenuated LQQ venom-evoked increases in GSH (p 0.05 vs. venom), MDA in rat hearts and lungs (p 0.05 vs. venom), plus LDH in the heart (p 0.01). Aprotinin alone significantly reduced the venom-elicited increase in G6PD and LDH activities and the decrease in GPx levels (p 0.05). In general, these protective effects of EGb761 on GSH, MDA (p 0.01 vs. venom) and LDH (p 0.001) in the heart and/or lung were potentiated when combined with aprotinin. We concluded that the effectiveness of EGb761 and Apr in ameliorating venom-evoked biochemical changes indicative of necrosis and free radical generation point out the involvement of oxidative stress and proteases in venom-evoked cellular damages seen in this study in isolated rat hearts and lungs.

3.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;11(2): 175-197, May-Aug. 2005. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: lil-400109

RESUMEN

Scorpion venom toxins generally produce similar effects by mainly acting on sodium channels, and to a lesser extent, on potassium, calcium, and chloride channels. This leads to increased release of neurotransmitters and mediators, resulting in a cascade of pathological events, involving the central nervous system, the autonomic nervous system, the cardiovascular and the respiratory system, eventually leading to death. The objective of this paper was to discover whether a sodium channel blocker, lidocaine, or a calcium channel blocker, verapamil, would prolong the survival of mice injected with the venom from the common yellow scorpion Leiurus quinquestriatus quinquestriatus (LQQ). For this purpose, mice were divided into 2 groups, each injected with a different venom dose (250 or 300 µg.kg-1, s.c.). Subgroups (n=10) from each group were given venom alone; different doses of lidocaine (4, 10, 15, or 20 mg.kg-1); or several doses of verapamil (0.01, 0.03, 0.1, 0.3, or 1 mg.kg-1). All doses of lidocaine and verapamil were intravenously administered 3 minutes before, 1, 5, and 15 minutes after venom injection. Percent surviving after 24 hours was recorded in addition to the time of death. In general, lidocaine significantly prolonged survival at the dose of 10 mg.kg-1 (P<0.05 and P<0.01, versus low and high dose of venom, respectively) or 15 mg.kg-1 (P<0.01 and P<0.001, versus low and high dose of venom, respectively; Covariance Wilcoxon survival statistics), especially when injected before the venom or in the early stages of envenomation. On the other hand, in all doses administered, verapamil was either toxic or showed non-significant results. Lidocaine, the sodium channel blocker, appears to play an important role in the protection from lethality of mice injected with LQQ venom, and significantly prolonged the survival time of mice whether injected before or in the early stages of envenomation.(AU)


Asunto(s)
Animales , Ratones , Venenos de Escorpión/toxicidad , Bloqueadores de los Canales de Calcio/efectos adversos , Sistema Nervioso Central , Bloqueadores de los Canales de Sodio/efectos adversos , Neurotransmisores
4.
Artículo en Inglés | VETINDEX | ID: vti-443021

RESUMEN

Scorpion venom toxins generally produce similar effects by mainly acting on sodium channels, and to a lesser extent, on potassium, calcium, and chloride channels. This leads to increased release of neurotransmitters and mediators, resulting in a cascade of pathological events, involving the central nervous system, the autonomic nervous system, the cardiovascular and the respiratory system, eventually leading to death. The objective of this paper was to discover whether a sodium channel blocker, lidocaine, or a calcium channel blocker, verapamil, would prolong the survival of mice injected with the venom from the common yellow scorpion Leiurus quinquestriatus quinquestriatus (LQQ). For this purpose, mice were divided into 2 groups, each injected with a different venom dose (250 or 300 µg.kg-1, s.c.). Subgroups (n=10) from each group were given venom alone; different doses of lidocaine (4, 10, 15, or 20 mg.kg-1); or several doses of verapamil (0.01, 0.03, 0.1, 0.3, or 1 mg.kg-1). All doses of lidocaine and verapamil were intravenously administered 3 minutes before, 1, 5, and 15 minutes after venom injection. Percent surviving after 24 hours was recorded in addition to the time of death. In general, lidocaine significantly prolonged survival at the dose of 10 mg.kg-1 (P 0.05 and P 0.01, versus low and high dose of venom, respectively) or 15 mg.kg-1 (P 0.01 and P 0.001, versus low and high dose of venom, respectively; Covariance Wilcoxon survival statistics), especially when injected before the venom or in the early stages of envenomation. On the other hand, in all doses administered, verapamil was either toxic or showed non-significant results. Lidocaine, the sodium channel blocker, appears to play an important role in the protection from lethality of mice injected with LQQ venom, and significantly prolonged the survival time of mice whether injected before or in the early stages of envenomation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA