Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Ultramicroscopy ; 186: 30-34, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29248869

RESUMEN

The gallium ion beam heating on electron transparent transmission electron microscopy (TEM) samples of Au/Ni bilayer films supported by SiO2 substrates was studied by in-situ TEM combined with energy dispersive X-ray spectroscopy. Brief Ga+ ion beam irradiation during sample transfer inside the focused ion beam instrument was found to induce dewetting of bilayer films. The observed morphological changes of the metal films are complemented by considerable Au diffusion through the underlying polycrystalline Ni film and adsorption at the Ni/substrate interface. In-situ heating experiments confirm that alterations of the metal bilayer films caused by ion beam irradiation are consistent with thermal annealing at 400 °C for several minutes in the absence of any ion bombardment. Ion beam damage effects equivalent to prolonged heating may pose considerable limitations to ion beam microscopy of samples with reduced dimensions. Ex-situ lift-out procedures of electron transparent samples in the absence of any ion beam irradiation lead to successful conservation of sample morphologies.

3.
J Vis Exp ; (120)2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28287535

RESUMEN

A spark plasma sintering apparatus was used as a novel method for diffusion bonding of two single crystals of strontium titanate to form bicrystals with one twist grain boundary. This apparatus utilizes high uniaxial pressure and a pulsed direct current for rapid consolidation of material. Diffusion bonding of strontium titanate bicrystals without fracture, in a spark plasma sintering apparatus, is possible at high pressures due to the unusual temperature dependent plasticity behavior of strontium titanate. We demonstrate a method for the successful formation of bicrystals at accelerated time scales and lower temperatures in a spark plasma sintering apparatus compared to bicrystals formed by conventional diffusion bonding parameters. Bond quality was verified by scanning electron microscopy. A clean and atomically abrupt interface containing no secondary phases was observed using transmission electron microscopy techniques. Local changes in bonding across the boundary was characterized by simultaneous scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy.


Asunto(s)
Óxidos/química , Gases em Plasma , Estroncio/química , Titanio/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Temperatura
4.
J Appl Phys ; 122(23): 234303, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29307918

RESUMEN

The reduction reactions and densification of nanochains assembled from γ-Fe2O3 nanoparticles were investigated using in situ transmission electron microscopy (TEM). Morphological changes and reduction of the metal oxide nanochains were observed during in situ TEM annealing through simultaneous imaging and quantitative analysis of the near-edge fine structures of Fe L2,3 absorption edges acquired by spatially resolved electron energy loss spectroscopy. A change in the oxidation states during annealing of the iron oxide nanochains was observed with phase transformations due to continuous reduction from Fe2O3 over Fe3O4, FeO to metallic Fe. Phase transitions during the in situ heating experiments were accompanied with morphological changes in the nanochains, specifically rough-to-smooth surface transitions below 500 °C, neck formation between adjacent particles around 500 °C, and subsequent neck growth. At higher temperatures, coalescence of FeO particles was observed, representing densification.

5.
Ultramicroscopy ; 178: 1, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28029456
6.
Ultramicroscopy ; 178: 131-139, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27324837

RESUMEN

The solid state dewetting of Au/Ni bilayer films was investigated by cross-sectional transmission electron microscopy techniques, including energy-dispersive X-ray spectroscopy, electron energy-loss spectroscopy and precession electron diffraction. After annealing under high vacuum conditions the early stage of film agglomeration revealed significant changes in film morphology and chemical distribution. Both Au and Ni showed texturing. Despite the initial deposition sequence of the as-deposited Au/Ni/SiO2/Si interface structure, the majority of the metal/SiO2 interface was Au/SiO2 after annealing at 675°C for 1h. Void nucleation was predominantly observed at Au/Ni/SiO2 triple junctions, rather than grain boundary grooving at free surface of the metal film. Detailed cross-sectional characterization reveals that the Au/Ni interface in addition to small amounts of metal alloying strongly affects film break-up and agglomeration kinetics. The formation of Au/SiO2 interface sections is found to be energetically preferred over Ni/SiO2 due to compressive stress in the as-deposited Ni layer. Void nucleation is observed at the film/substrate interface, while the formation of voids at Ni/Au phase boundaries inside the metal film is caused by the Kirkendall effect.

7.
Microsc Microanal ; 22(3): 565-75, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27142307

RESUMEN

The scanning electron microscope provides a platform for subnanometer resolution characterization of material morphology with excellent topographic and chemical contrast dependent on the used detectors. For imaging applications, the predominantly utilized signals are secondary electrons (SEs) and backscattered electrons (BSEs) that are emitted from the sample surface. Recent advances in detector technology beyond the traditional Everhart-Thornley geometry have enabled the simultaneous acquisition and discrimination of SE and BSE signals. This study demonstrates the imaging capabilities of a recently introduced new detector system that consists of the combination of two in-lens (I-L) detectors and one in-column (I-C) detector. Coupled with biasing the sample stage to reduce electron-specimen interaction volumes, this trinity of detector geometry allows simultaneous acquisition of signals to distinguish chemical contrast from topographical changes of the sample, including the identification of surface contamination. The I-C detector provides 4× improved topography, whereas the I-L detector closest to the sample offers excellent simultaneous chemical contrast imaging while not limiting the minimization of working distance to obtain optimal lateral resolution. Imaging capabilities and contrast mechanisms for all three detectors are discussed quantitatively in direct comparison to each other and the conventional Everhart-Thornley detector.

8.
ACS Nano ; 10(5): 5391-7, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27096547

RESUMEN

Herein we report the electroless deposition of Ge onto sacrificial Ag nanoparticle (NP) templates to form hollow Ge NPs. The formation of AgI is a necessary component for this reaction. Through a systematic study of surface passivating ligands, we determined that tri-n-octylphosphine is necessary to facilitate the formation of hollow Ge NPs by acting as a transport agent for GeI2 and the oxidized Ag(+) cation (i.e., AgI product). Annular dark-field (ADF) scanning transmission electron microscopy (STEM) imaging of incomplete reactions revealed Ag/Ge core/shell NPs; in contrast, completed reactions displayed hollow Ge NPs with pinholes which is consistent with the known method for dissolution of the nanotemplate. Characterization of the hollow Ge NPs was performed by transmission electron microscopy, ADF-STEM, energy-dispersive X-ray spectroscopy, UV-vis spectrophotometry, and Raman spectroscopy. The galvanic replacement reaction of Ag with GeI2 offers a versatile method for controlling the structure of Ge nanomaterials.

9.
Sci Rep ; 6: 23046, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26965073

RESUMEN

Obliteration of matter by pulsed laser beams is not only prevalent in science fiction movies, but finds numerous technological applications ranging from additive manufacturing over machining of micro- and nanostructured features to health care. Pulse lengths ranging from femtoseconds to nanoseconds are utilized at varying laser beam energies and pulse lengths, and enable the removal of nanometric volumes of material. While the mechanisms for removal of material by laser irradiation, i.e., laser ablation, are well understood on the micrometer length scale, it was previously impossible to directly observe obliteration processes on smaller scales due to experimental limitations for the combination of nanometer spatial and nanosecond temporal resolution. Here, we report the direct observation of metal thin film ablation from a solid substrate through dynamic transmission electron microscopy. Quantitative analysis reveals liquid-phase dewetting of the thin-film, followed by hydrodynamic sputtering of nano- to submicron sized metal droplets. We discovered unexpected fracturing of the substrate due to evolving thermal stresses. This study confirms that hydrodynamic sputtering remains a valid mechanism for droplet expulsion on the nanoscale, while irradiation induced stress fields represent limit laser processing of nanostructured materials. Our results allow for improved safety during laser ablation in manufacturing and medical applications.


Asunto(s)
Terapia por Láser/métodos , Rayos Láser , Microscopía Electrónica de Transmisión/métodos , Metales/química , Microscopía Electrónica de Transmisión/instrumentación , Nanoestructuras/química
10.
Phys Rev Lett ; 114(19): 195503, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26024181

RESUMEN

Electric field-assisted sintering techniques demonstrate accelerated densification at lower temperatures than the conventional sintering methods. However, it is still debated whether the applied field and/or resulting currents are responsible for the densification enhancement. To distinguish the effects of an applied field from current flow, in situ scanning transmission electron microscopy experiments with soft agglomerates of partially stabilized yttria-doped zirconia particles are carried out. A new microelectromechanical system-based sample support is used to heat particle agglomerates while simultaneously exposing them to an externally applied noncontacting electric field. Under isothermal condition at 900 °C, an electric field strength of 500 V/cm shows a sudden threefold enhancement in the shrinkage of the agglomerates. The applied electrostatic potential lowers the activation energy for point defect formation within the space charge zone and therefore promotes consolidation. Obtaining similar magnitudes of shrinkage in the absence of any electric field requires a higher temperature and longer time.

11.
Ultramicroscopy ; 152: 35-43, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25600824

RESUMEN

Studying particle-agglomerate systems compared to two-particle systems elucidates different stages of sintering by monitoring both pores and particles. We report on in situ sintering of 3% yttria-stablized zirconia particle agglomerates in the transmission electron microscope (TEM). Real-time TEM observations indicate neck formation and growth, particle coalescence and pore closure. A MATLAB-based image processing tool was developed to calculate the projected area of the agglomerate with and without internal pores during in situ sintering. We demonstrate the first densification curves generated from sequentially acquired TEM images. The in situ sintering onset temperature was then determined to be at 960 °C. Densification curves illustrated that the agglomerate projected area which excludes the internal observed pores also shrinks during in situ sintering. To overcome the common projection problem for TEM analyses, agglomerate mass-thickness maps were obtained from low energy-loss analysis combined with STEM imaging. The decrease in the projected area was directly related to the increase in mass-thickness of the agglomerate, likely caused by hidden pores existing in the direction of the beam. Access to shrinkage curves through in situ TEM analysis provides a new avenue to investigate fundamental mechanisms of sintering through directly correlating microstructural changes during consolidation with mesoscale densification behavior.

12.
J Mater Chem A Mater ; 2(32): 12974-12981, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25254112

RESUMEN

The contamination of drinking water with naturally occurring arsenic is a global health threat. Filters that are packed with adsorbent media with a high affinity for arsenic have been used to de-contaminate water - generally iron or aluminium oxides are favored materials. Recently, nanoparticles have been introduced as adsorbent media due to their superior efficiency compared to their bulk counter-parts. An efficient nanoadsorbent should ideally possess high surface area, be easy to synthesize, and most importantly offer a high arsenic removal capacity. Achieving all the key features in a single step synthesis is an engineering challenge. We have successfully engineered such a material in the form of nanochains synthesized via a one step flame synthesis. The ultra-long γ-Fe2O3 nanochains possess high surface area (151.12 m2 g-1), large saturation magnetization (77.1 emu g-1) that aids in their gas phase self-assembly into long chains in an external magnetic field, along with an extraordinary arsenic removal capacity (162 mg.g-1). A filter made with this material exhibited a relatively low-pressure drop and very little break-through of the iron oxide across the filter.

13.
Ultramicroscopy ; 137: 55-65, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24321382

RESUMEN

Dewetting of ultra-thin Ni films deposited on SiO2 layers was observed, in cross-section, by in situ scanning transmission electron microscopy. Holes were observed to nucleate by voids which formed at the Ni/SiO2 interface rather than at triple junctions at the free surface of the Ni film. Ni islands were observed to retract, in attempt to reach equilibrium on the SiO2 layer. SiO2 layers with 120 nm thickness were found to limit in situ heating experiments due to poor thermal conductivity of SiO2. The formation of graphite was observed during the agglomeration of ultra-thin Ni films. Graphite was observed to wet both the free surface and the Ni/SiO2 interface of the Ni islands. Cr forms surface oxide layers on the free surface of the SiO2 layer and the Ni islands. Cr does not prevent the dewetting of Ni, however it will likely alter the equilibrium shape of the Ni islands.

14.
Phys Rev Lett ; 100(6): 066101, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18352490

RESUMEN

"Subsurfactant epitaxy" is established as a conceptually new approach for introducing manganese as a magnetic dopant into germanium. A kinetic pathway is devised in which the subsurface interstitial sites on Ge(100) are first selectively populated with Mn, while lateral diffusion and clustering on or underneath the surface are effectively suppressed. Subsequent Ge deposition as a capping layer produces a novel surfactantlike phenomenon as the interstitial Mn atoms float towards newly defined subsurface sites at the growth front. Furthermore, the Mn atoms that failed to float upwards are uniformly distributed within the Ge capping layer. The resulting doping levels of order 0.25 at. % would normally be considered too low for ferromagnetic ordering, but the Curie temperature exceeds room temperature by a comfortable margin. Subsurfactant epitaxy thus enables superior dopant control in magnetic semiconductors.

15.
Nano Lett ; 8(4): 1016-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18336008

RESUMEN

Aberration-corrected scanning transmission electron microscopy (STEM) is used to reveal individual Au atom configurations inside Si nanowires grown by Au-catalyzed vapor-liquid-solid (VLS) molecular beam epitaxy (MBE). We identify a substitutional and three distinct interstitial configurations, one of which has not been previously identified. We confirm the stability of the observed point defect configurations by density functional theory (DFT) calculations. The observed number densities of the various configurations are in accord with their calculated formation energies. The concentration of Au atoms is larger than the solubility limit, but the effect may be caused by the STEM beam.

16.
Ultramicroscopy ; 106(11-12): 1062-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16875782

RESUMEN

Aberration correction in scanning transmission electron microscopy has more than doubled the lateral resolution, greatly improving the visibility of individual impurity or dopant atoms. Depth resolution is increased five-fold, to the nanometer level. We show how a through-focal series of images enables single Hf atoms to be located inside an advanced gate dielectric device structure to a precision of better than 0.1 x 0.1 x 0.5 nm. This depth sectioning method for three-dimensional characterization has potential applications to many other fields, including polycrystalline materials, catalysts and biological structures.

18.
Phys Rev Lett ; 93(22): 227201, 2004 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-15601111

RESUMEN

Quantitative analysis of spatially resolved valence electron energy-loss spectra shows strong physical property contrasts for Sigma5 and near Sigma13 grain boundaries in Fe-doped SrTiO3, resulting in London dispersion interaction energies of 14 to 50 mJ/m(2) between the adjacent grains. The determination of local physical properties of grain boundary cores and the appreciable contribution of long-range London dispersion to interface energies provides new information on formation and control of interfaces in materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...