Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioconjug Chem ; 34(12): 2215-2220, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37962868

RESUMEN

Bispecific antibodies as T cell engagers designed to display binding capabilities to both tumor-associated antigens and antigens on T cells are considered promising agents in the fight against cancer. Even though chemical strategies to develop such constructs have emerged, a method that readily converts a therapeutically applied antibody into a bispecific construct by a fully non-genetic process is not yet available. Herein, we report the application of a biogenic, tyrosine-based click reaction utilizing chemoenzymatic modifications of native IgG1 antibodies to generate a synthetic bispecific antibody construct that exhibits tumor-killing capability at picomolar concentrations. Control experiments revealed that a covalent linkage of the different components is required for the observed biological activities. In view of the highly potent nature of the constructs and the modular approach that relies on convenient synthetic methods utilizing therapeutically approved biomolecules, our method expedites the production of potent bispecific antibody constructs with tunable cell killing efficacy with significant impact on therapeutic properties.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Humanos , Linfocitos T , Química Clic , Neoplasias/tratamiento farmacológico , Anticuerpos Biespecíficos/química , Antígenos de Neoplasias/metabolismo
2.
Bioconjug Chem ; 34(3): 538-548, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857521

RESUMEN

GlycoConnect technology can be readily adapted to provide different drug-to-antibody ratios (DARs) and is currently also evaluated in various clinical programs, including ADCT-601 (DAR2), MRG004a (DAR4), and XMT-1660 (DAR6). While antibody-drug conjugates (ADCs) typically feature a DAR2-8, it has become clear that ADCs with ultrapotent payloads (e.g., PBD dimers and calicheamicin) can only be administered to patients at low doses (<0.5 mg/kg), which may compromise effective biodistribution and may be insufficient to reach target receptor saturation in the tumor. Here, we show that GlycoConnect technology can be readily extended to DAR1 ADCs without the need of antibody re-engineering. We demonstrate that various ultrapotent, cytotoxic payloads are amenable to this methodology. In a follow-up experiment, HCC-1954 tumor spheroids were treated with either an AlexaFluor647-labeled DAR1 or DAR2 PBD-based ADC to study the effect on tumor penetration. Significant improvement of tumor spheroid penetration was observed for the DAR1 ADC compared to the DAR2 ADC at an equal payload dose, underlining the potential of a lower DAR for ADCs bearing ultrapotent payloads.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Inmunoconjugados , Neoplasias Hepáticas , Humanos , Inmunoconjugados/uso terapéutico , Distribución Tisular , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Tecnología
3.
Chemistry ; 29(39): e202300231, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-36942680

RESUMEN

Reaction rates of strained cycloalkynes and cycloalkenes with 1,2-quinone were quantified by stopped flow UV-Vis spectroscopy and computational analysis. We found that the strained alkyne BCN-OH 3 (k2 1824 M-1 s-1 ) reacts >150 times faster than the strained alkene TCO-OH 5 (k2 11.56 M-1 s-1 ), and that derivatization with a carbamate can lead to a reduction of the rate constant with almost half. Also, the 8-membered strained alkyne BCN-OH 3 reacts 16 times faster than the more strained 7-membered THS 2 (k2 110.6 M-1 s-1 ). Using the linearized Eyring equation we determined the thermodynamic activation parameters of these two strained alkynes, revealing that the SPOCQ reaction of quinone 1 with THS 2 is associated with ΔH≠ of 0.80 kcal/mol, ΔS≠ =-46.8 cal/K⋅mol, and ΔG≠ =14.8 kcal/mol (at 25 °C), whereas the same reaction with BCN-OH 3 is associated with, ΔH≠ =2.25 kcal/mol, ΔS≠ =-36.3 cal/K⋅mol, and ΔG≠ =13.1 kcal/mol (at 25 °C). Computational analysis supported the values obtained by the stopped-flow measurements, with calculated ΔG≠ of 15.6 kcal/mol (in H2 O) for the SPOCQ reaction with THS 2, and with ΔG≠ of 14.7 kcal/mol (in H2 O) for the SPOCQ reaction with BCN-OH 3. With these empirically determined thermodynamic parameters, we set an important step towards a more fundamental understanding of this set of rapid click reactions.

4.
MAbs ; 14(1): 2078466, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634725

RESUMEN

Antibody-drug conjugates (ADCs) are increasingly powerful medicines for targeted cancer therapy. Inspired by the trend to further improve their therapeutic index by generation of homogenous ADCs, we report here how the clinical-stage GlycoConnect™ technology uses the globally conserved N-glycosylation site to generate stable and site-specific ADCs based on enzymatic remodeling and metal-free click chemistry. We demonstrate how an engineered endoglycosidase and a native glycosyl transferase enable highly efficient, one-pot glycan remodeling, incorporating a novel sugar substrate 6-azidoGalNAc. Metal-free click attachment of an array of cytotoxic payloads was highly optimized, in particular by inclusion of anionic surfactants. The therapeutic potential of GlycoConnect™, in combination with HydraSpace™ polar spacer technology, was compared to that of Kadcyla® (ado-trastuzumab emtansine), showing significantly improved efficacy and tolerability.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Ado-Trastuzumab Emtansina , Inmunoconjugados/uso terapéutico , Polisacáridos , Índice Terapéutico
5.
Mol Cancer Ther ; 21(2): 310-321, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34911819

RESUMEN

After several notable clinical failures in early generations, antibody-drug conjugates (ADC) have made significant gains with seven new FDA approvals within the last 3 years. These successes have been driven by a shift towards mechanistically informed ADC design, where the payload, linker, drug-to-antibody ratio, and conjugation are increasingly tailored to a specific target and clinical indication. However, fundamental aspects needed for design, such as payload distribution, remain incompletely understood. Payloads are often classified as "bystander" or "nonbystander" depending on their ability to diffuse out of targeted cells into adjacent cells that may be antigen-negative or more distant from tumor vessels, helping to overcome heterogeneous distribution. Seven of the 11 FDA-approved ADCs employ these bystander payloads, but the depth of penetration and cytotoxic effects as a function of physicochemical properties and mechanism of action have not been fully characterized. Here, we utilized tumor spheroids and pharmacodynamic marker staining to quantify tissue penetration of the three major classes of agents: microtubule inhibitors, DNA-damaging agents, and topoisomerase inhibitors. PAMPA data and coculture assays were performed to compare with the 3D tissue culture data. The results demonstrate a spectrum in bystander potential and tissue penetration depending on the physicochemical properties and potency of the payload. Generally, directly targeted cells show a greater response even with bystander payloads, consistent with the benefit of deeper ADC tissue penetration. These results are compared with computational simulations to help scale the data from in vitro and preclinical animal models to the clinic.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Inmunoconjugados/química , Inmunoconjugados/farmacología
6.
Bioconjug Chem ; 32(10): 2167-2172, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34519477

RESUMEN

The availability of tools to generate homogeneous and stable antibody conjugates without recombinant DNA technology is a valuable asset in fields spanning from in vitro diagnostics to in vivo imaging and therapeutics. We present here a general approach for the conjugation to human IgG1 antibodies, by employing a straightforward two-stage protocol based on antibody deglycosylation followed by tyrosinase-mediated ortho-quinone strain-promoted click chemistry. The technology is validated by the efficient and clean generation of highly potent DAR2 and DAR4 antibody-drug conjugates (ADCs) with cytotoxic payloads MMAE or PBD dimer, and their in vitro evaluation.


Asunto(s)
Trastuzumab , Tirosina , Anticuerpos Monoclonales
7.
ACS Omega ; 4(7): 11801-11807, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31460288

RESUMEN

Knob-in-hole antibodies can be utilized to introduce a single tag for chemo-enzymatic functionalization. By either introducing a single C-terminal sortase tag (sortase-tag expressed protein ligation) or tyrosine tag (G4Y), mono-functionalization of the monoclonal antibody trastuzumab was achieved rapidly and in high yields. This method was applied to selectively and efficiently introduce a single fluorescent tag, cytokine or single-chain variable fragment, as well as produce clean homo dimers of trastuzumab.

8.
Methods Mol Biol ; 2012: 357-368, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31161517

RESUMEN

Proteins can be labeled site-specifically and in inducible fashion by exposing a small peptide tag (G4Y) on any of its termini and activating the newly exposed tyrosine residue with the enzyme mushroom tyrosinase. The enzyme generates a quinone by oxidizing the tyrosine, which in turn can perform strain-promoted oxidation-controlled ortho-quinone cycloaddition (SPOCQ) with strained alkynes and alkenes, generating a stable conjugation product. Here, we describe a protocol to perform SPOCQ reaction on proteins, along with notes to optimize yield and reaction rates. Conjugation efficiencies of over 95% to antibodies have been reported using this protocol.


Asunto(s)
Oxidación-Reducción , Proteínas/química , Coloración y Etiquetado , Tirosina/química , Anticuerpos/química , Catálisis , Cromatografía Líquida de Alta Presión , Humanos , Inmunoconjugados/química , Espectrometría de Masas , Coloración y Etiquetado/métodos
9.
Drug Discov Today Technol ; 30: 3-10, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30553518

RESUMEN

Target-specific killing of tumor cells with antibody-drug conjugates (ADCs) is an elegant concept in the continued fight against cancer. However, despite more than 20 years of clinical development, only four ADC have reached market approval, while at least 50 clinical programs were terminated early. The high attrition rate of ADCs may, at least in part, be attributed to heterogeneity and instability of conventional technologies. At present, various (chemo)enzymatic approaches for site-specific and stable conjugation of toxic payloads are making their way to the clinic, thereby potentially providing ADCs with increased therapeutic window.


Asunto(s)
Enzimas/química , Inmunoconjugados/química , Humanos , Relación Estructura-Actividad
10.
Chem Commun (Camb) ; 54(53): 7338-7341, 2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29911239

RESUMEN

Reaction of cyclopropanated trans-cyclooctene (cpTCO) with in situ generated ortho-quinone is an efficient tool for bioorthogonal protein conjugation. The (4+2)-cycloaddition of cpTCO with ortho-quinone is significantly faster than its cyclooctyne counterpart (BCN). Orthogonal, tandem cpTCO-quinone and BCN-azide cycloadditions afforded a homogeneous, dual labelled antibody-drug conjugate.

11.
Antibodies (Basel) ; 7(1)2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31544864

RESUMEN

Despite tremendous efforts in the field of targeted cancer therapy with antibody-drug conjugates (ADCs), attrition rates have been high. Historically, the priority in ADC development has been the selection of target, antibody, and toxin, with little focus on the nature of the linker. We show here that a short and polar sulfamide spacer (HydraSpace™, Oss, The Netherlands) positively impacts ADC properties in various ways: (a) efficiency of conjugation; (b) stability; and (c) therapeutic index. Different ADC formats are explored in terms of drug-to-antibody ratios (DAR2, DAR4) and we describe the generation of a DAR4 ADC by site-specific attachment of a bivalent linker-payload construct to a single conjugation site in the antibody. A head-to-head comparison of HydraSpace™-containing DAR4 ADCs to marketed drugs, derived from the same antibody and toxic payload components, indicated a significant improvement in both the efficacy and safety of several vivo models, corroborated by in-depth pharmacokinetic analysis. Taken together, HydraSpace™ technology based on a polar sulfamide spacer provides significant improvement in manufacturability, stability, and ADC design, and is a powerful platform to enable next-generation ADCs with enhanced therapeutic index.

13.
J Org Chem ; 83(1): 244-252, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29260879

RESUMEN

Stimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne-1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH⧧) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH⧧ of 4.5, 7.3, and 12.1 kcal/mol, for bicyclo[6.1.0]non-4-yne (BCN), cyclooctyne (OCT), and dibenzoazacyclooctyne (DIBAC), respectively. Second, their reaction paths were investigated in detail by a range of quantum mechanical calculations. Single-configuration theoretical methods, like various DFT and a range of MP2-based methods, typically overestimate this barrier by 3-8 kcal/mol (after inclusion of zero-point energy, thermal, and solvation corrections), whereas MP2 itself underestimates the barrier significantly. Only dispersion-corrected DFT methods like B97D (yielding 4.9, 6.4, and 12.1 kcal/mol for these three reactions) and high-level CCSD(T) and multireference multiconfiguration AQCC ab initio approaches (both yielding 8.2 kcal/mol for BCN) give good approximations of experimental data. Finally, the multireference methods show that the radical character in the TS is rather small, thus rationalizing the use of single-reference methods like B97D and SCS-MP2 as intrinsically valid approaches.

14.
Angew Chem Int Ed Engl ; 56(15): 4130-4134, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28294495

RESUMEN

Mica is the substrate of choice for microscopic visualization of a wide variety of intricate nanostructures. Unfortunately, the lack of a facile strategy for its modification has prevented the on-mica assembly of nanostructures. Herein, we disclose a convenient catechol-based linker that enables various surface-bound metal-free click reactions, and an easy modification of mica with DNA nanostructures and a horseradish peroxidase mimicking hemin/G-quadruplex DNAzyme.

15.
Bioconjug Chem ; 28(4): 1189-1193, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28263569

RESUMEN

Genetically encoded tyrosine (Y-tag) can be utilized as a latent anchor for inducible and site-selective conjugation. Upon oxidation of tyrosine with mushroom tyrosinase, strain-promoted cycloaddition (SPOCQ) of the resulting 1,2-quinone with various bicyclo[6.1.0]nonyne (BCN) derivatives led to efficient conjugation. The method was applied for fluorophore labeling of laminarinase A and for the site-specific preparation of an antibody-drug conjugate.


Asunto(s)
Inmunoconjugados/química , Monofenol Monooxigenasa/química , Coloración y Etiquetado/métodos , Tirosina/química , Celulasas , Reacción de Cicloadición , Oxidación-Reducción
16.
Top Curr Chem (Cham) ; 374(2): 16, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27573141

RESUMEN

A nearly forgotten reaction discovered more than 60 years ago-the cycloaddition of a cyclic alkyne and an organic azide, leading to an aromatic triazole-enjoys a remarkable popularity. Originally discovered out of pure chemical curiosity, and dusted off early this century as an efficient and clean bioconjugation tool, the usefulness of cyclooctyne-azide cycloaddition is now adopted in a wide range of fields of chemical science and beyond. Its ease of operation, broad solvent compatibility, 100 % atom efficiency, and the high stability of the resulting triazole product, just to name a few aspects, have catapulted this so-called strain-promoted azide-alkyne cycloaddition (SPAAC) right into the top-shelf of the toolbox of chemical biologists, material scientists, biotechnologists, medicinal chemists, and more. In this chapter, a brief historic overview of cycloalkynes is provided first, along with the main synthetic strategies to prepare cycloalkynes and their chemical reactivities. Core aspects of the strain-promoted reaction of cycloalkynes with azides are covered, as well as tools to achieve further reaction acceleration by means of modulation of cycloalkyne structure, nature of azide, and choice of solvent.

17.
Chem Commun (Camb) ; 51(77): 14462-4, 2015 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-26273707

RESUMEN

The γ-amino alcohol structural motif is often encountered in drugs and natural products. We developed two complementary catalytic diastereoselective methods for the synthesis of N-PMP-protected γ-amino alcohols from the corresponding ketones. The anti-products were obtained through Ir-catalyzed asymmetric transfer hydrogenation, the syn-products via Rh-catalyzed asymmetric hydrogenation.


Asunto(s)
Amino Alcoholes/síntesis química , Amino Alcoholes/química , Catálisis , Hidrogenación , Estereoisomerismo
18.
Bioconjug Chem ; 26(11): 2233-42, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26061183

RESUMEN

A robust, generally applicable, nongenetic technology is presented to convert monoclonal antibodies into stable and homogeneous ADCs. Starting from a native (nonengineered) mAb, a chemoenzymatic protocol allows for the highly controlled attachment of any given payload to the N-glycan residing at asparagine-297, based on a two-stage process: first, enzymatic remodeling (trimming and tagging with azide), followed by ligation of the payload based on copper-free click chemistry. The technology, termed GlycoConnect, is applicable to any IgG isotype irrespective of glycosylation profile. Application to trastuzumab and maytansine, both components of the marketed ADC Kadcyla, demonstrate a favorable in vitro and in vivo efficacy for GlycoConnect ADC. Moreover, the superiority of the native glycan as attachment site was demonstrated by in vivo comparison to a range of trastuzumab-based glycosylation mutants. A side-by-side comparison of the copper-free click probes bicyclononyne (BCN) and a dibenzoannulated cyclooctyne (DBCO) showed a surprising difference in conjugation efficiency in favor of BCN, which could be even further enhanced by introduction of electron-withdrawing fluoride substitutions onto the azide. The resulting mAb-conjugates were in all cases found to be highly stable, which in combination with the demonstrated efficacy warrants ADCs with a superior therapeutic index.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoconjugados/química , Polisacáridos/química , Ado-Trastuzumab Emtansina , Anticuerpos Monoclonales Humanizados/química , Azidas/química , Secuencia de Carbohidratos , Química Clic , Glicosilación , Humanos , Maitansina/análogos & derivados , Maitansina/química , Modelos Moleculares , Datos de Secuencia Molecular , Estabilidad Proteica , Trastuzumab/química
19.
FASEB J ; 29(7): 2993-3002, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25868729

RESUMEN

Glycosaminoglycan (GAG) polysaccharides have been implicated in a variety of cellular processes, and alterations in their amount and structure have been associated with diseases such as cancer. In this study, we probed 11 sugar analogs for their capacity to interfere with GAG biosynthesis. One analog, with a modification not directly involved in the glycosidic bond formation, 6F-N-acetyl-d-galactosamine (GalNAc) (Ac3), was selected for further study on its metabolic and biologic effect. Treatment of human ovarian carcinoma cells with 50 µM 6F-GalNAc (Ac3) inhibited biosynthesis of GAGs (chondroitin/dermatan sulfate by ∼50-60%, heparan sulfate by ∼35%), N-acetyl-d-glucosamine (GlcNAc)/GalNAc containing glycans recognized by the lectins Datura stramonium and peanut agglutinin (by ∼74 and ∼43%, respectively), and O-GlcNAc protein modification. With respect to function, 6F-GalNAc (Ac3) treatment inhibited growth factor signaling and reduced in vivo angiogenesis by ∼33%. Although the analog was readily transformed in cells into the uridine 5'-diphosphate (UDP)-activated form, it was not incorporated into GAGs. Rather, it strongly reduced cellular UDP-GalNAc and UDP-GlcNAc pools. Together with data from the literature, these findings indicate that nucleotide sugar depletion without incorporation is a common mechanism of sugar analogs for inhibiting GAG/glycan biosynthesis.


Asunto(s)
Acetilgalactosamina/análogos & derivados , Glicosaminoglicanos/biosíntesis , Acetilgalactosamina/química , Acetilgalactosamina/farmacología , Animales , Línea Celular , Embrión de Pollo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Glicosaminoglicanos/antagonistas & inhibidores , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Polisacáridos/antagonistas & inhibidores , Polisacáridos/biosíntesis , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Uridina Difosfato N-Acetilgalactosamina/metabolismo , Uridina Difosfato N-Acetilglucosamina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Molecules ; 20(4): 6592-600, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25875038

RESUMEN

Citrullination is the conversion of peptidylarginine to peptidylcitrulline, which is catalyzed by peptidylarginine deiminases. This conversion is involved in different physiological processes and is associated with several diseases, including cancer and rheumatoid arthritis. A common method to detect citrullinated proteins relies on anti-modified citrulline antibodies directed to a specific chemical modification of the citrulline side chain. Here, we describe a versatile, antibody-independent method for the detection of citrullinated proteins on a membrane, based on the selective reaction of phenylglyoxal with the ureido group of citrulline under highly acidic conditions. The method makes use of 4-azidophenylglyoxal, which, after reaction with citrullinated proteins, can be visualized with alkyne-conjugated probes. The sensitivity of this procedure, using an alkyne-biotin probe, appeared to be comparable to the antibody-based detection method and independent of the sequence surrounding the citrulline.


Asunto(s)
Western Blotting , Citrulina/química , Fenilglioxal/química , Proteínas/química , Animales , Western Blotting/métodos , Catálisis , Humanos , Hidrolasas/metabolismo , Indicadores y Reactivos/química , Desiminasas de la Arginina Proteica , Proteínas/metabolismo , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...