Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Vaccin Immunother ; 17(1): 14-21, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-32412865

RESUMEN

Viruses have evolved to efficiently express their genes in host cells, which makes them ideally suited as gene delivery vectors for gene and immunotherapies. Replication competent (RC) viral vectors encoding foreign or self-proteins induce strong T-cell responses that can be used for the development of effective cancer treatments. Replication-defective (RD) viral vectors encoding self-proteins are non-immunogenic when introduced in a host naïve for the cognate virus. RD viral vectors can be used to develop gene replacement therapies for genetic disorders and tolerization therapies for autoimmune diseases and allergies. Degenerative/inflammatory diseases are associated with chronic inflammation and immune responses that damage the tissues involved. These diseases therefore strongly resemble autoimmune diseases. This review deals with the use of RC and RD viral vectors for unraveling the pathogenesis of immune-related diseases and their application to the development of the next generation prophylactics and therapeutics for todays' major diseases.


Asunto(s)
Vectores Genéticos , Virus , Técnicas de Transferencia de Gen , Genes Virales , Terapia Genética
2.
Cell Microbiol ; 19(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27860066

RESUMEN

Over 90% of the adult population is infected with one or multiple herpesviruses. These viruses are characterized by their ability to establish latency, where the host is unable to clear the invader from infected cells resulting in a lifelong infection. Herpesviruses cause a wide variety of (recurrent) diseases such as cold sores, shingles, congenital defects and several malignancies. Although the productive phase of a herpesvirus infection can often be efficiently limited by nucleoside analogs, these drugs are ineffective during a latent herpesvirus infection and are therefore unable to clear herpesviruses from the human host. Advances in genome engineering using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 facilitates virus research and may hold potential to treat or cure previously incurable herpesvirus infections by directly targeting these viruses within infected cells. Here, we review recent applications of the CRISPR/Cas9 system for herpesviral research and discuss the therapeutic potential of the system to treat, or even cure, productive and latent herpesviral infections.


Asunto(s)
Terapia Biológica/métodos , Sistemas CRISPR-Cas , Infecciones por Herpesviridae/terapia , Herpesviridae/patogenicidad , Interacciones Huésped-Patógeno , Latencia del Virus , Animales , Humanos
3.
PLoS Pathog ; 12(6): e1005701, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27362483

RESUMEN

Herpesviruses infect the majority of the human population and can cause significant morbidity and mortality. Herpes simplex virus (HSV) type 1 causes cold sores and herpes simplex keratitis, whereas HSV-2 is responsible for genital herpes. Human cytomegalovirus (HCMV) is the most common viral cause of congenital defects and is responsible for serious disease in immuno-compromised individuals. Epstein-Barr virus (EBV) is associated with infectious mononucleosis and a broad range of malignancies, including Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's disease, and post-transplant lymphomas. Herpesviruses persist in their host for life by establishing a latent infection that is interrupted by periodic reactivation events during which replication occurs. Current antiviral drug treatments target the clinical manifestations of this productive stage, but they are ineffective at eliminating these viruses from the infected host. Here, we set out to combat both productive and latent herpesvirus infections by exploiting the CRISPR/Cas9 system to target viral genetic elements important for virus fitness. We show effective abrogation of HCMV and HSV-1 replication by targeting gRNAs to essential viral genes. Simultaneous targeting of HSV-1 with multiple gRNAs completely abolished the production of infectious particles from human cells. Using the same approach, EBV can be almost completely cleared from latently infected EBV-transformed human tumor cells. Our studies indicate that the CRISPR/Cas9 system can be effectively targeted to herpesvirus genomes as a potent prophylactic and therapeutic anti-viral strategy that may be used to impair viral replication and clear latent virus infection.


Asunto(s)
Sistemas CRISPR-Cas/genética , Citomegalovirus/genética , Edición Génica/métodos , Genoma Viral , Infecciones por Herpesviridae/genética , Herpesviridae/genética , Línea Celular , Herpesvirus Humano 1 , Humanos , Reacción en Cadena de la Polimerasa , Latencia del Virus/genética
4.
Science ; 350(6264): 1092-6, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26472760

RESUMEN

Although the genes essential for life have been identified in less complex model organisms, their elucidation in human cells has been hindered by technical barriers. We used extensive mutagenesis in haploid human cells to identify approximately 2000 genes required for optimal fitness under culture conditions. To study the principles of genetic interactions in human cells, we created a synthetic lethality network focused on the secretory pathway based exclusively on mutations. This revealed a genetic cross-talk governing Golgi homeostasis, an additional subunit of the human oligosaccharyltransferase complex, and a phosphatidylinositol 4-kinase ß adaptor hijacked by viruses. The synthetic lethality map parallels observations made in yeast and projects a route forward to reveal genetic networks in diverse aspects of human cell biology.


Asunto(s)
Redes Reguladoras de Genes , Genes Esenciales , Genes Letales , Aptitud Genética/genética , Haploidia , Aparato de Golgi/genética , Hexosiltransferasas/genética , Humanos , Proteínas de la Membrana/genética , Mutagénesis Insercional , Mutación , Saccharomyces cerevisiae/genética
5.
Elife ; 42015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26327695

RESUMEN

Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans.


Asunto(s)
Células Epiteliales/fisiología , Hepatocitos/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Línea Celular , Supervivencia Celular , Humanos
6.
Proc Natl Acad Sci U S A ; 111(17): 6431-6, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24737893

RESUMEN

Large glycosylating toxins are major virulence factors of various species of pathogenic Clostridia. Prototypes are Clostridium difficile toxins A and B, which cause antibiotics-associated diarrhea and pseudomembranous colitis. The current model of the toxins' action suggests that receptor binding is mediated by a C-terminal domain of combined repetitive oligopeptides (CROP). This model is challenged by the glycosylating Clostridium perfringens large cytotoxin (TpeL toxin) that is devoid of the CROP domain but still intoxicates cells. Using a haploid genetic screen, we identified LDL receptor-related protein 1 (LRP1) as a host cell receptor for the TpeL toxin. LRP1-deficient cells are not able to take up TpeL and are not intoxicated. Expression of cluster IV of LRP1 is sufficient to rescue toxin uptake in these cells. By plasmon resonance spectroscopy, a KD value of 23 nM was determined for binding of TpeL to LRP1 cluster IV. The C terminus of TpeL (residues 1335-1779) represents the receptor-binding domain (RBD) of the toxin. RBD-like regions are conserved in all other clostridial glycosylating toxins preceding their CROP domain. CROP-deficient C. difficile toxin B is toxic to cells, depending on the RBD-like region (residues 1349-1811) but does not interact with LRP1. Our data indicate the presence of a second, CROP-independent receptor-binding domain in clostridial glycosylating toxins and suggest a two-receptor model for the cellular uptake of clostridial glycosylating toxins.


Asunto(s)
Toxinas Bacterianas/metabolismo , Clostridium perfringens/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Animales , Toxinas Bacterianas/química , Membrana Celular/metabolismo , Embrión de Mamíferos/citología , Endocitosis , Fibroblastos/metabolismo , Pruebas Genéticas , Glicosilación , Haploidia , Células HeLa , Humanos , Ratones , Modelos Biológicos , Unión Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA