Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Nucl Med ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724275

RESUMEN

Currently, cutoffs of quantitative [15O]H2O PET to detect fractional flow reserve (FFR)-defined coronary artery disease (CAD) were derived from a single cohort that included patients without prior CAD. However, prior CAD, sex, and age can influence myocardial blood flow (MBF). Therefore, the present study determined the influence of prior CAD, sex, and age on optimal cutoffs of hyperemic MBF (hMBF) and coronary flow reserve (CFR) and evaluated whether cutoff optimization enhanced diagnostic performance of quantitative [15O]H2O PET against an FFR reference standard. Methods: Patients with chronic coronary symptoms underwent [15O]H2O PET and invasive coronary angiography with FFR. Optimal cutoffs for patients with and without prior CAD and subpopulations based on sex and age were determined. Results: This multicenter study included 560 patients. Optimal cutoffs were similar for patients with (n = 186) and without prior CAD (hMBF, 2.3 vs. 2.3 mL·min-1·g-1; CFR, 2.7 vs. 2.6). Females (n = 190) had higher hMBF cutoffs than males (2.8 vs. 2.3 mL·min-1·g-1), whereas CFRs were comparable (2.6 vs. 2.7). However, female sex-specific hMBF cutoff implementation decreased diagnostic accuracy as compared with the cutoff of 2.3 mL·min-1·g-1 (72% vs. 82%, P < 0.001). Patients aged more than 70 y (n = 79) had lower hMBF (1.7 mL·min-1·g-1) and CFR (2.3) cutoffs than did patients aged 50 y or less, 51-60 y, and 61-70 y (hMBF, 2.3-2.4 mL·min-1·g-1; CFR, 2.7). Age-specific cutoffs in patients aged more than 70 y yielded comparable accuracy to the previously established cutoffs (hMBF, 72% vs. 76%, P = 0.664; CFR, 80% vs. 75%, P = 0.289). Conclusion: Patients with and without prior CAD had similar [15O]H2O PET cutoffs for detecting FFR-defined significant CAD. Stratifying patients according to sex and age led to different optimal cutoffs; however, these values did not translate into an increased overall accuracy as compared with previously established thresholds for MBF.

2.
Atherosclerosis ; : 117555, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38702268

RESUMEN

BACKGROUND AND AIMS: Microvascular Resistance Reserve (MRR) has recently been introduced as a microvasculature-specific index and hypothesized to be independent of coronary stenosis. The aim of this study was to investigate the change of MRR after percutaneous coronary intervention (PCI). METHODS: In this post-hoc analysis from the PACIFC trials, symptomatic patients underwent [15O]H2O positron emission tomography (PET) and invasive fractional flow reserve (FFR) before and after revascularization. Coronary flow reserve (CFR) from PET and invasive FFR were used to calculate MRR. RESULTS: Among 52 patients (87 % male, age 59.4 ± 9.4 years), 61 vessels with a median FFR of 0.71 (95 % confidence interval: 0.55 to 0.74) and a mean MRR of 3.80 ± 1.23 were included. Following PCI, FFR, hyperemic myocardial blood flow (hMBF) and CFR increased significantly (all p-values ≤0.001). MRR remained unchanged after PCI (3.80 ± 1.23 before PCI versus 3.60 ± 0.97 after PCI; p=0.23). In vessels with a pre-PCI, FFR ≤0.70 pre- and post-PCI MRR were 3.90 ± 1.30 and 3.73 ± 1.14 (p=0.56), respectively. Similar findings were observed for vessels with a FFR between 0.71 and 0.80 (pre-PCI MRR 3.70 ± 1.17 vs. post PCI MRR 3.48 ± 0.76, p=0.19). CONCLUSIONS: Our study indicates that MRR, assessed using a hybrid approach of PET and invasive FFR, is independent of the severity of epicardial stenosis. These findings suggest that MRR is a microvasculature-specific parameter.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38658269

RESUMEN

OBJECTIVES: We sought to investigate the impact of sex on myocardial perfusion changes following chronic total coronary occlusion (CTO) percutaneous coronary intervention (PCI) as measured by [15O]H2O positron-emission tomography (PET) perfusion imaging. BACKGROUND: CTO PCI has been associated with an increase in myocardial perfusion, yet females are less likely to undergo revascularization. As such, data on the impact of sex on myocardial perfusion following CTO PCI is scarce. METHODS: A total of 212 patients were prospectively enrolled and underwent CTO PCI combined with [15O]H2O PET perfusion imaging prior to and 3 months after PCI. Hyperemic myocardial blood flow (hMBF, mL·min-1·g-1) and coronary flow reserve (CFR) allocated to the CTO territory were quantitatively assessed. RESULTS: This study comprised 34 (16 %) females and 178 (84 %) males. HMBF at baseline did not differ between sexes. Females showed a higher increase in hMBF than males (Δ1.34 ± 0.67 vs. Δ1.06 ± 0.74, p = 0.044), whereas post-PCI hMBF was comparable (2.59 ± 0.85 in females vs. 2.28 ± 0.84 in males, p = 0.052). Female sex was independently associated with a higher increase in hMBF after correction for clinical covariates. CFR increase after revascularization was similar in females and males (Δ1.47 ± 0.99 vs. Δ1.30 ± 1.14, p = 0.711). CONCLUSIONS: The present study demonstrates a greater recovery of stress perfusion in females compared to males as measured by serial [15O]H2O PET imaging. In addition, a comparable increase in CFR was found in females and males. These results emphasize the benefit of performing CTO PCI in both sexes. CLINICAL PERSPECTIVE: What is new? What are the clinical implications?

4.
Artículo en Inglés | MEDLINE | ID: mdl-38483420

RESUMEN

BACKGROUND: Noninvasive stress testing is commonly used for detection of coronary ischemia but possesses variable accuracy and may result in excessive health care costs. OBJECTIVES: This study aimed to derive and validate an artificial intelligence-guided quantitative coronary computed tomography angiography (AI-QCT) model for the diagnosis of coronary ischemia that integrates atherosclerosis and vascular morphology measures (AI-QCTISCHEMIA) and to evaluate its prognostic utility for major adverse cardiovascular events (MACE). METHODS: A post hoc analysis of the CREDENCE (Computed Tomographic Evaluation of Atherosclerotic Determinants of Myocardial Ischemia) and PACIFIC-1 (Comparison of Coronary Computed Tomography Angiography, Single Photon Emission Computed Tomography [SPECT], Positron Emission Tomography [PET], and Hybrid Imaging for Diagnosis of Ischemic Heart Disease Determined by Fractional Flow Reserve) studies was performed. In both studies, symptomatic patients with suspected stable coronary artery disease had prospectively undergone coronary computed tomography angiography (CTA), myocardial perfusion imaging (MPI), SPECT, or PET, fractional flow reserve by CT (FFRCT), and invasive coronary angiography in conjunction with invasive FFR measurements. The AI-QCTISCHEMIA model was developed in the derivation cohort of the CREDENCE study, and its diagnostic performance for coronary ischemia (FFR ≤0.80) was evaluated in the CREDENCE validation cohort and PACIFIC-1. Its prognostic value was investigated in PACIFIC-1. RESULTS: In CREDENCE validation (n = 305, age 64.4 ± 9.8 years, 210 [69%] male), the diagnostic performance by area under the receiver-operating characteristics curve (AUC) on per-patient level was 0.80 (95% CI: 0.75-0.85) for AI-QCTISCHEMIA, 0.69 (95% CI: 0.63-0.74; P < 0.001) for FFRCT, and 0.65 (95% CI: 0.59-0.71; P < 0.001) for MPI. In PACIFIC-1 (n = 208, age 58.1 ± 8.7 years, 132 [63%] male), the AUCs were 0.85 (95% CI: 0.79-0.91) for AI-QCTISCHEMIA, 0.78 (95% CI: 0.72-0.84; P = 0.037) for FFRCT, 0.89 (95% CI: 0.84-0.93; P = 0.262) for PET, and 0.72 (95% CI: 0.67-0.78; P < 0.001) for SPECT. Adjusted for clinical risk factors and coronary CTA-determined obstructive stenosis, a positive AI-QCTISCHEMIA test was associated with an HR of 7.6 (95% CI: 1.2-47.0; P = 0.030) for MACE. CONCLUSIONS: This newly developed coronary CTA-based ischemia model using coronary atherosclerosis and vascular morphology characteristics accurately diagnoses coronary ischemia by invasive FFR and provides robust prognostic utility for MACE beyond presence of stenosis.

5.
J Nucl Med ; 65(2): 279-286, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176722

RESUMEN

In patients evaluated for obstructive coronary artery disease (CAD), guidelines recommend using either fractional flow reserve (FFR) or instantaneous wave-free ratio (iFR) to guide coronary revascularization decision-making. The hemodynamic significance of lesions with discordant FFR and iFR measurements is debated. This study compared [15O]H2O PET-derived absolute myocardial perfusion between vessels with concordant and discordant FFR and iFR measurements. Methods: We included 197 patients suspected of obstructive CAD who had undergone [15O]H2O PET perfusion imaging and combined FFR/iFR interrogation in 468 vessels. Resting myocardial blood flow (MBF), hyperemic MBF, and coronary flow reserve (CFR) were compared among 4 groups: FFR low/iFR low (n = 79), FFR high/iFR low (n = 22), FFR low/iFR high (n = 22), and FFR high/iFR high (n = 345). Predefined [15O]H2O PET thresholds for ischemia were 2.3 mL·min-1·g-1 or less for hyperemic MBF and 2.5 or less for CFR. Results: Hyperemic MBF was lower in the concordant low (2.09 ± 0.67 mL·min-1·g-1), FFR high/iFR low (2.41 ± 0.80 mL·min-1·g-1), and FFR low/iFR high (2.40 ± 0.69 mL·min-1·g-1) groups compared with the concordant high group (2.91 ± 0.84 mL·min-1·g-1) (P < 0.001, P = 0.004, and P < 0.001, respectively). A lower CFR was observed in the concordant low (2.37 ± 0.76) and FFR high/iFR low (2.64 ± 0.84) groups compared with the concordant high group (3.35 ± 1.07, P < 0.01 for both). However, for vessels with either low FFR or low iFR, quantitative hyperemic MBF and CFR values exceeded the ischemic threshold in 38% and 49%, respectively. In addition, resting MBF exhibited a negative correlation with iFR (P < 0.001) and was associated with FFR low/iFR high discordance compared with concordant low FFR/low iFR measurements, independent of clinical and angiographic characteristics, as well as hyperemic MBF (odds ratio [OR], 0.41; 95% CI, 0.26-0.65; P < 0.001). Conclusion: We found reduced myocardial perfusion in vessels with concordant low and discordant FFR/iFR measurements. However, FFR/iFR combinations often inaccurately classified vessels as either ischemic or nonischemic when compared with hyperemic MBF and CFR. Furthermore, a lower resting MBF was associated with a higher iFR and the occurrence of FFR low/iFR high discordance. Our study showed that although combined FFR/iFR assessment can be useful to estimate the hemodynamic significance of coronary lesions, these pressure-derived indices provide a limited approximation of [15O]H2O PET-derived quantitative myocardial perfusion as the physiologic standard of CAD severity.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Imagen de Perfusión Miocárdica , Humanos , Reserva del Flujo Fraccional Miocárdico/fisiología , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Hemodinámica , Valor Predictivo de las Pruebas , Índice de Severidad de la Enfermedad , Vasos Coronarios
6.
JACC Cardiovasc Imaging ; 17(3): 269-280, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37480907

RESUMEN

BACKGROUND: The recent development of artificial intelligence-guided quantitative coronary computed tomography angiography analysis (AI-QCT) has enabled rapid analysis of atherosclerotic plaque burden and characteristics. OBJECTIVES: This study set out to investigate the 10-year prognostic value of atherosclerotic burden derived from AI-QCT and to compare the spectrum of plaque to manually assessed coronary computed tomography angiography (CCTA), coronary artery calcium scoring (CACS), and clinical risk characteristics. METHODS: This was a long-term follow-up study of 536 patients referred for suspected coronary artery disease. CCTA scans were analyzed with AI-QCT and plaque burden was classified with a plaque staging system (stage 0: 0% percentage atheroma volume [PAV]; stage 1: >0%-5% PAV; stage 2: >5%-15% PAV; stage 3: >15% PAV). The primary major adverse cardiac event (MACE) outcome was a composite of nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, and all-cause mortality. RESULTS: The mean age at baseline was 58.6 years and 297 patients (55%) were male. During a median follow-up of 10.3 years (IQR: 8.6-11.5 years), 114 patients (21%) experienced the primary outcome. Compared to stages 0 and 1, patients with stage 3 PAV and percentage of noncalcified plaque volume of >7.5% had a more than 3-fold (adjusted HR: 3.57; 95% CI 2.12-6.00; P < 0.001) and 4-fold (adjusted HR: 4.37; 95% CI: 2.51-7.62; P < 0.001) increased risk of MACE, respectively. Addition of AI-QCT improved a model with clinical risk factors and CACS at different time points during follow-up (10-year AUC: 0.82 [95% CI: 0.78-0.87] vs 0.73 [95% CI: 0.68-0.79]; P < 0.001; net reclassification improvement: 0.21 [95% CI: 0.09-0.38]). Furthermore, AI-QCT achieved an improved area under the curve compared to Coronary Artery Disease Reporting and Data System 2.0 (10-year AUC: 0.78; 95% CI: 0.73-0.83; P = 0.023) and manual QCT (10-year AUC: 0.78; 95% CI: 0.73-0.83; P = 0.040), although net reclassification improvement was modest (0.09 [95% CI: -0.02 to 0.29] and 0.04 [95% CI: -0.05 to 0.27], respectively). CONCLUSIONS: Through 10-year follow-up, AI-QCT plaque staging showed important prognostic value for MACE and showed additional discriminatory value over clinical risk factors, CACS, and manual guideline-recommended CCTA assessment.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Humanos , Masculino , Femenino , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/terapia , Inteligencia Artificial , Estudios de Seguimiento , Valor Predictivo de las Pruebas , Arterias , Angiografía Coronaria
7.
Circ Cardiovasc Imaging ; 16(9): e014845, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37725672

RESUMEN

BACKGROUND: Coronary flow capacity (CFC) is a measure that integrates hyperemic myocardial blood flow and coronary flow reserve to quantify the pathophysiological impact of coronary artery disease on vasodilator capacity. This study explores the prognostic value of modified CFC derived from [15O]H2O positron emission tomography perfusion imaging. METHODS: Quantitative rest/stress perfusion measurements were obtained from 1300 patients with known or suspected coronary artery disease. Patients were classified as having myocardial steal (n=38), severely reduced CFC (n=141), moderately reduced CFC (n=394), minimally reduced CFC (n=245), or normal flow (n=482) using previously defined thresholds. The end point was a composite of death and nonfatal myocardial infarction. RESULTS: During a median follow-up of 5.5 (interquartile range, 3.7-7.8) years, the end point occurred in 153 (12%) patients. Myocardial steal (hazard ratio [HR], 6.70 [95% CI, 3.21-13.99]; P<0.001), severely reduced CFC (HR, 2.35 [95% CI, 1.16-4.78]; P=0.018), and moderately reduced CFC (HR, 1.95 [95% CI, 1.11-3.41]; P=0.020) were associated with worse prognosis compared with normal flow, after adjusting for clinical characteristics. Similarly, in the overall population, increased resting myocardial blood flow (HR, 3.05 [95% CI, 1.68-5.54]; P<0.001), decreased hyperemic myocardial blood flow (HR, 0.68 [95% CI, 0.52-0.90]; P=0.007) and decreased coronary flow reserve (HR, 0.55 [95% CI, 0.42-0.71]; P<0.001) were independently associated with adverse outcome. In a model adjusted for the combined use of perfusion metrics, modified CFC demonstrated independent prognostic value (overall P=0.017). CONCLUSIONS: [15O]H2O positron emission tomography-derived resting myocardial blood flow, hyperemic myocardial blood flow, coronary flow reserve, and CFC are prognostic factors for death and nonfatal myocardial infarction in patients with known or suspected coronary artery disease. Importantly, after adjustment for clinical characteristics and the combined use of [15O]H2O positron emission tomography perfusion metrics, modified CFC remained independently associated with adverse outcome.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Pronóstico , Perfusión , Tomografía de Emisión de Positrones , Imagen de Perfusión
8.
Catheter Cardiovasc Interv ; 102(5): 844-856, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37671770

RESUMEN

BACKGROUND: The Japanese Channel (J-Channel) score was introduced to aid in retrograde percutaneous coronary intervention (PCI) of chronic total coronary occlusions (CTOs). The predictive value of the J-Channel score has not been compared with established collateral grading systems such as the Rentrop classification and Werner grade. AIMS: To investigate the predictive value of the J-Channel score, Rentrop classification and Werner grade for successful collateral channel (CC) guidewire crossing and technical CTO PCI success. METHODS: A total of 600 prospectively recruited patients underwent CTO PCI. All grading systems were assessed under dual catheter injection. CC guidewire crossing was considered successful if the guidewire reached the distal segment of the CTO vessel through a retrograde approach. Technical CTO PCI success was defined as thrombolysis in myocardial infarction flow grade 3 and residual stenosis <30%. RESULTS: Of 600 patients, 257 (43%) underwent CTO PCI through a retrograde approach. Successful CC guidewire crossing was achieved in 208 (81%) patients. The predictive value of the J-Channel score for CC guidewire crossing (area under curve 0.743) was comparable with the Rentrop classification (0.699, p = 0.094) and superior to the Werner grade (0.663, p = 0.002). Technical CTO PCI success was reported in 232 (90%) patients. The Rentrop classification exhibited a numerically higher discriminatory ability (0.676) compared to the J-Channel score (0.664) and Werner grade (0.589). CONCLUSIONS: The J-channel score might aid in strategic collateral channel selection during retrograde CTO PCI. However, the J-Channel score, Rentrop classification, and Werner grade have limited value in predicting technical CTO PCI success.


Asunto(s)
Oclusión Coronaria , Intervención Coronaria Percutánea , Humanos , Intervención Coronaria Percutánea/efectos adversos , Resultado del Tratamiento , Angiografía Coronaria , Enfermedad Crónica , Oclusión Coronaria/diagnóstico por imagen , Oclusión Coronaria/terapia , Factores de Riesgo , Sistema de Registros
9.
Eur Heart J Cardiovasc Imaging ; 25(1): 116-126, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37578007

RESUMEN

AIMS: In chronic coronary syndrome (CCS) patients with documented coronary artery disease (CAD), ischaemia detection by myocardial perfusion imaging (MPI) and an invasive approach are viable diagnostic strategies. We compared the diagnostic performance of quantitative flow ratio (QFR) with single-photon emission computed tomography (SPECT), positron emission tomography (PET), and cardiac magnetic resonance imaging (CMR) in patients with prior CAD [previous percutaneous coronary intervention (PCI) and/or myocardial infarction (MI)]. METHODS AND RESULTS: This PACIFIC-2 sub-study evaluated 189 CCS patients with prior CAD for inclusion. Patients underwent SPECT, PET, and CMR followed by invasive coronary angiography with fractional flow reserve (FFR) measurements of all major coronary arteries (N = 567), except for vessels with a sub-total or chronic total occlusion. Quantitative flow ratio computation was attempted in 488 (86%) vessels with measured FFR available (FFR ≤0.80 defined haemodynamically significant CAD). Quantitative flow ratio analysis was successful in 334 (68%) vessels among 166 patients and demonstrated a higher accuracy (84%) and sensitivity (72%) compared with SPECT (66%, P < 0.001 and 46%, P = 0.001), PET (65%, P < 0.001 and 58%, P = 0.032), and CMR (72%, P < 0.001 and 33%, P < 0.001). The specificity of QFR (87%) was similar to that of CMR (83%, P = 0.123) but higher than that of SPECT (71%, P < 0.001) and PET (67%, P < 0.001). Lastly, QFR exhibited a higher area under the receiver operating characteristic curve (0.89) than SPECT (0.57, P < 0.001), PET (0.66, P < 0.001), and CMR (0.60, P < 0.001). CONCLUSION: QFR correlated better with FFR in patients with prior CAD than MPI, as reflected in the higher diagnostic performance measures for detecting FFR-defined, vessel-specific, significant CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Imagen de Perfusión Miocárdica , Intervención Coronaria Percutánea , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/terapia , Angiografía Coronaria/métodos , Imagen de Perfusión Miocárdica/métodos , Valor Predictivo de las Pruebas
10.
Eur J Nucl Med Mol Imaging ; 50(13): 3897-3909, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37561140

RESUMEN

PURPOSE: We sought to assess the impact of coronary revascularization on myocardial perfusion and fractional flow reserve (FFR) in patients without a cardiac history, with prior myocardial infarction (MI) or non-MI percutaneous coronary intervention (PCI). Furthermore, we studied the impact of scar tissue. METHODS: Symptomatic patients underwent [15O]H2O positron emission tomography (PET) and FFR before and after revascularization. Patients with prior CAD, defined as prior MI or PCI, underwent scar quantification by magnetic resonance imaging late gadolinium enhancement. RESULTS: Among 137 patients (87% male, age 62.2 ± 9.5 years) 84 (61%) had a prior MI or PCI. The increase in FFR and hyperemic myocardial blood flow (hMBF) was less in patients with prior MI or non-MI PCI compared to those without a cardiac history (FFR: 0.23 ± 0.14 vs. 0.20 ± 0.12 vs. 0.31 ± 0.18, p = 0.02; hMBF: 0.54 ± 0.75 vs. 0.62 ± 0.97 vs. 0.91 ± 0.96 ml/min/g, p = 0.04). Post-revascularization FFR and hMBF were similar across patients without a cardiac history or with prior MI or non-MI PCI. An increase in FFR was strongly associated to hMBF increase in patients without a cardiac history or with prior MI/non-MI PCI (r = 0.60 and r = 0.60, p < 0.01 for both). Similar results were found for coronary flow reserve. In patients with prior MI scar was negatively correlated to hMBF increase and independently predictive of an attenuated CFR increase. CONCLUSIONS: Post revascularization FFR and perfusion were similar among patients without a cardiac history, with prior MI or non-MI PCI. In patients with prior MI scar burden was associated to an attenuated perfusion increase.


Asunto(s)
Enfermedad de la Arteria Coronaria , Reserva del Flujo Fraccional Miocárdico , Infarto del Miocardio , Intervención Coronaria Percutánea , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/métodos , Reserva del Flujo Fraccional Miocárdico/fisiología , Angiografía Coronaria/métodos , Cicatriz/diagnóstico por imagen , Medios de Contraste , Resultado del Tratamiento , Gadolinio , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/terapia
11.
J Nucl Cardiol ; 30(4): 1558-1569, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36645580

RESUMEN

BACKGROUND: Positron emission tomography (PET) is the clinical gold standard for quantifying myocardial blood flow (MBF). Pericoronary adipose tissue (PCAT) attenuation may detect vascular inflammation indirectly. We examined the relationship between MBF by PET and plaque burden and PCAT on coronary CT angiography (CCTA). METHODS: This post hoc analysis of the PACIFIC trial included 208 patients with suspected coronary artery disease (CAD) who underwent [15O]H2O PET and CCTA. Low-attenuation plaque (LAP, < 30HU), non-calcified plaque (NCP), and PCAT attenuation were measured by CCTA. RESULTS: In 582 vessels, 211 (36.3%) had impaired per-vessel hyperemic MBF (≤ 2.30 mL/min/g). In multivariable analysis, LAP burden was independently and consistently associated with impaired hyperemic MBF (P = 0.016); over NCP burden (P = 0.997). Addition of LAP burden improved predictive performance for impaired hyperemic MBF from a model with CAD severity and calcified plaque burden (P < 0.001). There was no correlation between PCAT attenuation and hyperemic MBF (r = - 0.11), and PCAT attenuation was not associated with impaired hyperemic MBF in univariable or multivariable analysis of all vessels (P > 0.1). CONCLUSION: In patients with stable CAD, LAP burden was independently associated with impaired hyperemic MBF and a stronger predictor of impaired hyperemic MBF than NCP burden. There was no association between PCAT attenuation and hyperemic MBF.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Humanos , Estudios Prospectivos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Tomografía de Emisión de Positrones , Angiografía Coronaria/métodos , Angiografía por Tomografía Computarizada/métodos , Tejido Adiposo/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Valor Predictivo de las Pruebas
12.
J Cardiovasc Comput Tomogr ; 17(2): 112-119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36670043

RESUMEN

BACKGROUND: Distinct sex-related differences exist in coronary artery plaque burden and distribution. We aimed to explore sex differences in quantitative plaque burden by coronary CT angiography (CCTA) in relation to ischemia by invasive fractional flow reserve (FFR). METHODS: This post-hoc analysis of the PACIFIC trial included 581 vessels in 203 patients (mean age 58.1 â€‹± â€‹8.7 years, 63.5% male) who underwent CCTA and per-vessel invasive FFR. Quantitative assessment of total, calcified, non-calcified, and low-density non-calcified plaque burden were performed using semiautomated software. Significant ischemia was defined as invasive FFR ≤0.8. RESULTS: The per-vessel frequency of ischemia was higher in men than women (33.5% vs. 7.5%, p â€‹< â€‹0.001). Women had a smaller burden of all plaque subtypes (all p â€‹< â€‹0.01). There was no sex difference on total, calcified, or non-calcified plaque burdens in vessels with ischemia; only low-density non-calcified plaque burden was significantly lower in women (beta: -0.183, p â€‹= â€‹0.035). The burdens of all plaque subtypes were independently associated with ischemia in both men and women (For total plaque burden (5% increase): Men, OR: 1.15, 95%CI: 1.06-1.24, p â€‹= â€‹0.001; Women, OR: 1.96, 95%CI: 1.11-3.46, p â€‹= â€‹0.02). No significant interaction existed between sex and total plaque burden for predicting ischemia (interaction p â€‹= â€‹0.108). The addition of quantitative plaque burdens to stenosis severity and adverse plaque characteristics improved the discrimination of ischemia in both men and women. CONCLUSIONS: In symptomatic patients with suspected CAD, women have a lower CCTA-derived burden of all plaque subtypes compared to men. Quantitative plaque burden provides independent and incremental predictive value for ischemia, irrespective of sex.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Placa Aterosclerótica , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Angiografía por Tomografía Computarizada , Valor Predictivo de las Pruebas , Placa Aterosclerótica/complicaciones , Angiografía Coronaria/métodos , Índice de Severidad de la Enfermedad
13.
Eur Heart J Cardiovasc Imaging ; 24(3): 304-311, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36585755

RESUMEN

AIMS: Data on the warranty period of coronary computed tomography angiography (CTA) and combined coronary CTA/positron emission tomography (PET) are scarce. The present study aimed to determine the event-free (warranty) period after coronary CTA and the potential additional value of PET. METHOD AND RESULTS: Patients with suspected but not previously diagnosed coronary artery disease (CAD) who underwent coronary CTA and/or [15O]H2O PET were categorized based upon coronary CTA as no CAD, non-obstructive CAD, or obstructive CAD. A hyperaemic myocardial blood flow (MBF) ≤ 2.3 mL/min/g was considered abnormal. The warranty period was defined as the time for which the cumulative event rate of death and non-fatal myocardial infarction (MI) was below 5%. Of 2575 included patients (mean age 61.4 ± 9.9 years, 41% male), 1319 (51.2%) underwent coronary CTA only and 1237 (48.0%) underwent combined coronary CTA/PET. During a median follow-up of 7.0 years 163 deaths and 68 MIs occurred. The warranty period for patients with no CAD on coronary CTA was ≥10 years, whereas patients with non-obstructive CAD had a 5-year warranty period. Patients with obstructive CAD and normal hyperaemic MBF had a 2-year longer warranty period compared to patients with obstructive CAD and abnormal MBF (3 years vs. 1 year). CONCLUSION: As standalone imaging, the warranty period for normal coronary CTA is ≥10 years, whereas patients with non-obstructive CAD have a warranty period of 5 years. Normal PET yielded a 2-year longer warranty period in patients with obstructive CAD.


Asunto(s)
Angiografía por Tomografía Computarizada , Enfermedad de la Arteria Coronaria , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , Radioisótopos de Oxígeno , Angiografía Coronaria/métodos , Valor Predictivo de las Pruebas , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos
14.
Circ Cardiovasc Imaging ; 15(10): e014369, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36252116

RESUMEN

BACKGROUND: A pathophysiological interplay exists between plaque morphology and coronary physiology. Machine learning (ML) is increasingly being applied to coronary computed tomography angiography (CCTA) for cardiovascular risk stratification. We sought to assess the performance of a ML score integrating CCTA-based quantitative plaque features for predicting vessel-specific ischemia by invasive fractional flow reserve (FFR) and impaired myocardial blood flow (MBF) by positron emission tomography (PET). METHODS: This post-hoc analysis of the PACIFIC trial (Prospective Comparison of Cardiac Positron Emission Tomography/Computed Tomography [CT]' Single Photon Emission Computed Tomography/CT Perfusion Imaging and CT Coronary Angiography with Invasive Coronary Angiography) included 208 patients with suspected coronary artery disease who prospectively underwent CCTA' [15O]H2O PET, and invasive FFR. Plaque quantification from CCTA was performed using semiautomated software. An ML algorithm trained on the prospective NXT trial (484 vessels) was used to develop a ML score for the prediction of ischemia (FFR≤0.80), which was then evaluated in 581 vessels from the PACIFIC trial. Thereafter, the ML score was applied for predicting impaired hyperemic MBF (≤2.30 mL/min per g) from corresponding PET scans. The performance of the ML score was compared with CCTA reads and noninvasive FFR derived from CCTA (FFRCT). RESULTS: One hundred thirty-nine (23.9%) vessels had FFR-defined ischemia, and 195 (33.6%) vessels had impaired hyperemic MBF. For the prediction of FFR-defined ischemia, the ML score yielded an area under the receiver-operating characteristic curve of 0.92, which was significantly higher than that of visual stenosis grade (0.84; P<0.001) and comparable with that of FFRCT (0.93; P=0.34). Quantitative percent diameter stenosis and low-density noncalcified plaque volume had the greatest ML feature importance for predicting FFR-defined ischemia. When applied for impaired MBF prediction, the ML score exhibited an area under the receiver-operating characteristic curve of 0.80; significantly higher than visual stenosis grade (area under the receiver-operating characteristic curve 0.74; P=0.02) and comparable with FFRCT (area under the receiver-operating characteristic curve 0.77; P=0.16). CONCLUSIONS: An externally validated ML score integrating CCTA-based quantitative plaque features accurately predicts FFR-defined ischemia and impaired MBF by PET, performing superiorly to standard CCTA stenosis evaluation and comparably to FFRCT.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Placa Aterosclerótica , Humanos , Angiografía por Tomografía Computarizada/métodos , Constricción Patológica , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estenosis Coronaria/diagnóstico por imagen , Reserva del Flujo Fraccional Miocárdico/fisiología , Isquemia , Aprendizaje Automático , Valor Predictivo de las Pruebas , Tomografía Computarizada por Rayos X
15.
Curr Cardiol Rep ; 24(10): 1309-1325, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35925511

RESUMEN

PURPOSE OF REVIEW: This review will outline the current evidence on the anatomical, functional, and physiological tools that may be applied in the evaluation of patients with late recurrent angina after coronary artery bypass grafting (CABG). Furthermore, we discuss management strategies and propose an algorithm to guide decision-making for this complex patient population. RECENT FINDINGS: Patients with prior CABG often present with late recurrent angina as a result of bypass graft failure and progression of native coronary artery disease (CAD). These patients are generally older, have a higher prevalence of comorbidities, and more complex atherosclerotic lesion morphology compared to CABG-naïve patients. In addition, guideline recommendations are based on studies in which post-CABG patients have been largely excluded. Several invasive and non-invasive diagnostic tools are currently available to assess graft patency, the hemodynamic significance of native CAD progression, left ventricular function, and myocardial viability. Such tools, in particular the latest generation coronary computed tomography angiography, are part of a systematic diagnostic work-up to guide optimal repeat revascularization strategy in patients presenting with late recurrent angina after CABG.


Asunto(s)
Puente de Arteria Coronaria , Enfermedad de la Arteria Coronaria , Angina de Pecho/diagnóstico , Angina de Pecho/etiología , Angina de Pecho/terapia , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Puente de Arteria Coronaria/efectos adversos , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/cirugía , Humanos , Reoperación , Resultado del Tratamiento
16.
Eur Heart J ; 43(33): 3118-3128, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35708168

RESUMEN

AIMS: The diagnostic performance of non-invasive imaging in patients with prior coronary artery disease (CAD) has not been tested in prospective head-to-head comparative studies. The aim of this study was to compare the diagnostic performance of qualitative single-photon emission computed tomography (SPECT), quantitative positron emission tomography (PET), and qualitative magnetic resonance imaging (MRI) in patients with a prior myocardial infarction (MI) or percutaneous coronary intervention (PCI). METHODS AND RESULTS: In this prospective clinical study, all patients with prior MI and/or PCI and new symptoms of ischaemic CAD underwent 99mTc-tetrofosmin SPECT, [15O]H2O PET, and MRI, followed by invasive coronary angiography with fractional flow reserve (FFR) in all coronary arteries. All modalities were interpreted by core laboratories. Haemodynamically significant CAD was defined by at least one coronary artery with an FFR ≤0.80. Among the 189 enrolled patients, 63% had significant CAD. Sensitivity was 67% (95% confidence interval 58-76%) for SPECT, 81% (72-87%) for PET, and 66% (56-75%) for MRI. Specificity was 61% (48-72%) for SPECT, 65% (53-76%) for PET, and 62% (49-74%) for MRI. Sensitivity of PET was higher than SPECT (P = 0.016) and MRI (P = 0.014), whereas specificity did not differ among the modalities. Diagnostic accuracy for PET (75%, 68-81%) did not statistically differ from SPECT (65%, 58-72%, P = 0.03) and MRI (64%, 57-72%, P = 0.052). Using FFR < 0.75 as a reference, accuracies increased to 69% (SPECT), 79% (PET), and 71% (MRI). CONCLUSION: In this prospective head-to-head comparative study, SPECT, PET, and MRI did not show a significantly different accuracy for diagnosing FFR defined significant CAD in patients with prior PCI and/or MI. Overall diagnostic performances, however, were discouraging and the additive value of non-invasive imaging in this high-risk population is questionable.


Asunto(s)
Enfermedad de la Arteria Coronaria , Reserva del Flujo Fraccional Miocárdico , Imagen de Perfusión Miocárdica , Intervención Coronaria Percutánea , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Humanos , Imagen de Perfusión Miocárdica/métodos , Valor Predictivo de las Pruebas , Estudios Prospectivos , Tomografía Computarizada por Rayos X
17.
Atherosclerosis ; 347: 47-54, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35334346

RESUMEN

BACKGROUND AND AIMS: In this study, we investigated whether increased renin angiotensin aldosterone system (RAAS) activation and endothelin-1 levels are related to coronary artery calcium (CAC) score, total plaque volume (TPV), high risk plaque, hyperemic myocardial blood flow (MBF) and coronary microvascular dysfunction (CMD). METHODS: In a prospective, observational, cross-sectional cohort, renin as a marker for RAAS activation and endothelin-1 were measured in peripheral venous blood of 205 patients (64% men; age 58 ± 8.7 years) with suspected coronary artery disease (CAD) who underwent coronary computed tomography angiography (CCTA), [15O]H2O positron emission tomography (PET) perfusion imaging and invasive fractional flow reserve (FFR) measurements. Patients were categorized into three groups based on FFR (≤0.80) and hyperemic MBF <2.3 ml/min/g: [1] obstructive CAD (n = 92), [2] CMD (n = 26) or [3] no or non-obstructive CAD (n = 85). RESULTS: After correction for baseline characteristics, including RAAS inhibiting therapy, renin associated positively with CAC score and TPV, but not with hyperemic MBF (p < 0.01; p = 0.02 and p = 0.23). Patients with high risk plaque displayed higher levels of renin (mean logarithmic renin 1.25 ± 0.43 vs. 1.12 ± 0.35 pg/ml; p = 0.04), but not endothelin-1. Compared to no or non-obstructive CAD patients, renin was significantly elevated in obstructive CAD patients but not in CMD patients (mean logarithmic renin 1.06 ± 0.34 vs. 1.23 ± 0.36; p < 0.01 and 1.06 ± 0.34 vs. 1.16 ± 0.41 pg/ml; p = 0.65). Endothelin-1 did not differ between the three patient groups. CONCLUSIONS: Our report provides evidence that RAAS activity measured by renin concentration is elevated in patients with coronary atherosclerosis and high risk plaque but not in patients with CMD, whereas endothelin-1 is not related to either.


Asunto(s)
Enfermedad de la Arteria Coronaria , Reserva del Flujo Fraccional Miocárdico , Isquemia Miocárdica , Imagen de Perfusión Miocárdica , Placa Aterosclerótica , Anciano , Dolor en el Pecho , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estudios Transversales , Endotelina-1 , Femenino , Reserva del Flujo Fraccional Miocárdico/fisiología , Humanos , Masculino , Persona de Mediana Edad , Imagen de Perfusión Miocárdica/métodos , Valor Predictivo de las Pruebas , Estudios Prospectivos , Renina , Sistema Renina-Angiotensina
18.
Eur Heart J Cardiovasc Imaging ; 23(2): 229-237, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-33982071

RESUMEN

AIMS: To compare cardiac magnetic resonance (CMR) measurement of T1 reactivity (ΔT1) with [15O]H2O positron emission tomography (PET) measurements of quantitative myocardial perfusion. METHODS AND RESULTS: Forty-three patients with suspected obstructed coronary artery disease underwent [15O]H2O PET and CMR at 1.5-T, including rest and adenosine stress T1 mapping (ShMOLLI) and late gadolinium enhancement to rule out presence of scar tissue. ΔT1 was determined for the three main vascular territories and compared with [15O]H2O PET-derived regional stress myocardial blood flow (MBF) and myocardial flow reserve (MFR). ΔT1 showed a significant but poor correlation with stress MBF (R2 = 0.04, P = 0.03) and MFR (R2 = 0.07, P = 0.004). Vascular territories with impaired stress MBF (i.e. ≤2.30 mL/min/g) demonstrated attenuated ΔT1 compared with vascular territories with preserved stress MBF (2.9 ± 2.2% vs. 4.1 ± 2.2%, P = 0.008). In contrast, ΔT1 did not differ between vascular territories with impaired (i.e. <2.50) and preserved MFR (3.2 ± 2.6% vs. 4.0 ± 2.1%, P = 0.25). Receiver operating curve analysis of ΔT1 resulted in an area under the curve of 0.66 [95% confidence interval (CI): 0.57-0.75, P = 0.009] for diagnosing impaired stress MBF and 0.62 (95% CI: 0.53-0.71, P = 0.07) for diagnosing impaired MFR. CONCLUSIONS: CMR stress T1 mapping has poor agreement with [15O]H2O PET measurements of absolute myocardial perfusion. Stress T1 and ΔT1 are lower in vascular territories with reduced stress MBF but have poor accuracy for detecting impaired myocardial perfusion.


Asunto(s)
Enfermedad de la Arteria Coronaria , Imagen de Perfusión Miocárdica , Medios de Contraste , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Circulación Coronaria , Gadolinio , Humanos , Espectroscopía de Resonancia Magnética , Imagen de Perfusión Miocárdica/métodos , Radioisótopos de Oxígeno , Tomografía de Emisión de Positrones/métodos
19.
Eur Heart J Cardiovasc Imaging ; 23(6): 743-752, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34878102

RESUMEN

AIMS: Coronary flow capacity (CFC) integrates quantitative hyperaemic myocardial blood flow (hMBF) and coronary flow reserve (CFR) to comprehensively assess physiological severity of coronary artery disease (CAD). This study evaluated the effects of revascularization on CFC as assessed by serial [15O]H2O positron emission tomography (PET) perfusion imaging. METHODS AND RESULTS: A total of 314 patients with stable CAD underwent [15O]H2O PET imaging at baseline and after myocardial revascularization to assess changes in hMBF, CFR, and CFC in 415 revascularized vessels. Using thresholds for ischaemia and normal perfusion, vessels were stratified in five CFC categories: myocardial steal, severely reduced CFC, moderately reduced CFC, minimally reduced CFC, and normal flow. Additionally, the association between CFC increase and the composite endpoint of death and non-fatal myocardial infarction (MI) was studied. Vessel-specific CFC improved after revascularization (P < 0.01). Furthermore, baseline CFC was an independent predictor of CFC increase (P < 0.01). The largest changes in ΔhMBF (0.90 ± 0.74, 0.93 ± 0.65, 0.79 ± 0.74, 0.48 ± 0.61, and 0.29 ± 0.66 mL/min/g) and ΔCFR (1.01 ± 0.88, 0.99 ± 0.69, 0.87 ± 0.88, 0.66 ± 0.91, and -0.01 ± 1.06) were observed in vessels with lower baseline CFC (P < 0.01 for both). During a median follow-up of 3.5 (95% CI 3.1-3.9) years, an increase in CFC was independently associated with lower rates of death and non-fatal MI (HR 0.43, 95% CI 0.19-0.98, P = 0.04). CONCLUSION: Successful revascularization results in an increase in CFC. Furthermore, baseline CFC was an independent predictor of change in hMBF, CFR, and subsequently CFC. In addition, an increase in CFC was associated with a favourable outcome in terms of death and non-fatal MI.


Asunto(s)
Enfermedad de la Arteria Coronaria , Reserva del Flujo Fraccional Miocárdico , Infarto del Miocardio , Imagen de Perfusión Miocárdica , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/cirugía , Circulación Coronaria , Humanos , Imagen de Perfusión Miocárdica/métodos , Radioisótopos de Oxígeno , Perfusión , Tomografía de Emisión de Positrones
20.
EuroIntervention ; 18(4): e314-e323, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34866043

RESUMEN

BACKGROUND: Revascularisation of a chronic total coronary occlusion (CTO) impacts the coronary physiology of the remote myocardial territory. AIMS: This study aimed to evaluate the intrinsic effect of CTO percutaneous coronary intervention (PCI) on changes in absolute perfusion in remote myocardium. METHODS: A total of 164 patients who underwent serial [15O]H2O positron emission tomography (PET) perfusion imaging at baseline and three months after successful single-vessel CTO PCI were included to evaluate changes in hyperaemic myocardial blood flow (hMBF) and coronary flow reserve (CFR) in the remote myocardium supplied by both non-target coronary arteries. RESULTS: Perfusion indices in CTO and remote myocardium showed a positive correlation before (resting MBF: r=0.84, hMBF: r=0.75, and CFR: r=0.77, p<0.01 for all) and after (resting MBF: r=0.87, hMBF: r=0.87, and CFR: r=0.81, p<0.01 for all) CTO PCI. Absolute increases in hMBF and CFR were observed in remote myocardium following CTO revascularisation (from 2.29±0.67 to 2.48±0.75 mL·min-1·g-1 and from 2.48±0.76 to 2.74±0.85, respectively, p<0.01 for both). Improvements in remote myocardial perfusion were largest in patients with a higher increase in hMBF (ß 0.58, 95% CI: 0.48-0.67, p<0.01) and CFR (ß 0.54, 95% CI: 0.44-0.64, p<0.01) in the CTO territory, independent of clinical, angiographic and procedural characteristics. CONCLUSIONS: CTO revascularisation resulted in an increase in remote myocardial perfusion. Furthermore, the quantitative improvement in hMBF and CFR in the CTO territory was independently associated with the absolute perfusion increase in remote myocardial regions. As such, CTO PCI may have a favourable physiologic impact beyond the intended treated myocardium.


Asunto(s)
Oclusión Coronaria , Hiperemia , Imagen de Perfusión Miocárdica , Intervención Coronaria Percutánea , Enfermedad Crónica , Angiografía Coronaria , Circulación Coronaria/fisiología , Oclusión Coronaria/diagnóstico por imagen , Oclusión Coronaria/cirugía , Humanos , Imagen de Perfusión Miocárdica/métodos , Miocardio , Intervención Coronaria Percutánea/métodos , Perfusión , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...