Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Immunol ; 25(1): 88-101, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38012415

RESUMEN

Few cancers can be targeted efficiently by engineered T cell strategies. Here, we show that γδ T cell antigen receptor (γδ TCR)-mediated cancer metabolome targeting can be combined with targeting of cancer-associated stress antigens (such as NKG2D ligands or CD277) through the addition of chimeric co-receptors. This strategy overcomes suboptimal γ9δ2 TCR engagement of αß T cells engineered to express a defined γδ TCR (TEGs) and improves serial killing, proliferation and persistence of TEGs. In vivo, the NKG2D-CD28WT chimera enabled control only of liquid tumors, whereas the NKG2D-4-1BBCD28TM chimera prolonged persistence of TEGs and improved control of liquid and solid tumors. The CD277-targeting chimera (103-4-1BB) was the most optimal co-stimulation format, eradicating both liquid and solid tumors. Single-cell transcriptomic analysis revealed that NKG2D-4-1BBCD28TM and 103-4-1BB chimeras reprogram TEGs through NF-κB. Owing to competition with naturally expressed NKG2D in CD8+ TEGs, the NKG2D-4-1BBCD28TM chimera mainly skewed CD4+ TEGs toward adhesion, proliferation, cytotoxicity and less exhausted signatures, whereas the 103-4-1BB chimera additionally shaped the CD8+ subset toward a proliferative state.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Perfilación de la Expresión Génica
2.
J Immunother Cancer ; 11(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36931661

RESUMEN

BACKGROUND: Initial clinical responses with gene engineered chimeric antigen receptor (CAR) T cells in cancer patients are highly encouraging; however, primary resistance and also relapse may prevent durable remission in a substantial part of the patients. One of the underlying causes is the resistance mechanisms in cancer cells that limit effective killing by CAR T cells. CAR T cells exert their cytotoxic function through secretion of granzymes and perforin. Inhibition of granzyme B (GrB) can underlie resistance to T cell-mediated killing, and it has been shown that serine proteinase inhibitor serpin B9 can effectively inhibit GrB. We aimed to determine whether expression of serpin B9 by cancer cells can lead to resistance toward CAR T cells. METHODS: Serpin B9 gene and protein expression were examined by R2 or DepMap database mining and by western blot or flow cytometric analysis, respectively. Coculture killing experiments were performed with melanoma cell line MeWo, diffuse large B cell lymphoma (DLBCL) cell line OCI-Ly7 or primary chronic lymphocytic leukemia (CLL) cells as target cells and natural killer cell line YT-Indy, CD20 CAR T cells or CD19 CAR T cells as effector cells and analyzed by flow cytometry. RESULTS: Serpin B9 protein expression was previously shown to be associated with clinical outcome in melanoma patients and in line with these observations we demonstrate that enforced serpin B9 expression in melanoma cells reduces sensitivity to GrB-mediated killing. Next, we examined serpin B9 expression in a wide array of primary tumor tissues and human cell lines to find that serpin B9 is uniformly expressed in B-cell lymphomas and most prominently in DLBCL and CLL. Subsequently, using small interfering RNA, we silenced serpin B9 expression in DLBCL cells, which increased their sensitivity to CD20 CAR T cell-mediated killing. In addition, we showed that co-ulture of primary CLL cells with CD20 CAR T cells results in selection of serpin B9-high CLL cells, suggesting these cells resist CAR T-cell killing. CONCLUSIONS: Overall, the data indicate that serpin B9 is a resistance mediator for CAR T cell-mediated tumor cell killing that should be inhibited or bypassed to improve CAR T-cell responses.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Serpinas , Humanos , Muerte Celular , Citotoxicidad Inmunológica , Serpinas/genética , Linfocitos T
3.
Oncoimmunology ; 11(1): 2033528, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35127255

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies have resulted in profound clinical responses in the treatment of CD19-positive hematological malignancies, but a significant proportion of patients do not respond or relapse eventually. As an alternative to CAR T cells, T cells can be engineered to express a tumor-targeting T cell receptor (TCR). Due to HLA restriction of TCRs, CARs have emerged as a preferred treatment moiety when targeting surface antigens, despite the fact that functional differences between engineered TCR (eTCR) T and CAR T cells remain ill-defined. Here, we compared the activity of CAR T cells versus engineered TCR T cells in targeting the B cell malignancy-associated antigen CD20 as a function of antigen exposure. We found CAR T cells to be more potent effector cells, producing higher levels of cytokines and killing more efficiently than eTCR T cells in a short time frame. However, we revealed that the increase of antigen exposure significantly impaired CAR T cell expansion, a phenotype defined by high expression of coinhibitory molecules and effector differentiation. In contrast, eTCR T cells expanded better than CAR T cells under high antigenic pressure, with lower expression of coinhibitory molecules and maintenance of an early differentiation phenotype, and comparable clearance of tumor cells.


Asunto(s)
Recurrencia Local de Neoplasia , Linfocitos T , Antígenos CD20/metabolismo , Humanos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/genética
4.
Viruses ; 14(1)2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35062321

RESUMEN

In the complex interplay between inflammation and graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (allo-HSCT), viral reactivations are often observed and cause substantial morbidity and mortality. As toxicity after allo-HSCT within the context of viral reactivations is mainly driven by αß T cells, we describe that by delaying αß T cell reconstitution through defined transplantation techniques, we can harvest the full potential of early reconstituting γδ T cells to control viral reactivations. We summarize evidence of how the γδ T cell repertoire is shaped by CMV and EBV reactivations after allo-HSCT, and their potential role in controlling the most important, but not all, viral reactivations. As most γδ T cells recognize their targets in an MHC-independent manner, γδ T cells not only have the potential to control viral reactivations but also to impact the underlying hematological malignancies. We also highlight the recently re-discovered ability to recognize classical HLA-molecules through a γδ T cell receptor, which also surprisingly do not associate with GVHD. Finally, we discuss the therapeutic potential of γδ T cells and their receptors within and outside the context of allo-HSCT, as well as the opportunities and challenges for developers and for payers.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/efectos adversos , Linfocitos Intraepiteliales/inmunología , Virosis/complicaciones , Virosis/prevención & control , Citomegalovirus , Infecciones por Citomegalovirus/prevención & control , Infecciones por Virus de Epstein-Barr/prevención & control , Enfermedad Injerto contra Huésped/etiología , Neoplasias Hematológicas , Herpesvirus Humano 4 , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología
5.
Front Immunol ; 13: 1052090, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685546

RESUMEN

Introduction: We have recently developed a novel T cell engager concept by utilizing γ9δ2TCR as tumor targeting domain, named gamma delta TCR anti-CD3 bispecific molecule (GAB), targeting the phosphoantigen-dependent orchestration of BTN2A1 and BTN3A1 at the surface of cancer cells. GABs are made by the fusion of the ectodomains of a γδTCR to an anti-CD3 single chain variable fragment (scFv) (γδECTO-αCD3), here we explore alternative designs with the aim to enhance GAB effectivity. Methods: The first alternative design was made by linking the variable domains of the γ and δ chain to an anti-CD3 scFv (γδVAR-αCD3). The second alternative design was multimerizing γδVAR-αCD3 proteins to increase the tumor binding valency. Both designs were expressed and purified and the potency to target tumor cells by T cells of the alternative designs was compared to γδECTO-αCD3, in T cell activation and cytotoxicity assays. Results and discussion: The γδVAR-αCD3 proteins were poorly expressed, and while the addition of stabilizing mutations based on finding for αß single chain formats increased expression, generation of meaningful amounts of γδVAR-αCD3 protein was not possible. As an alternative strategy, we explored the natural properties of the original GAB design (γδECTO-αCD3), and observed the spontaneous formation of γδECTO-αCD3-monomers and -dimers during expression. We successfully enhanced the fraction of γδECTO-αCD3-dimers by shortening the linker length between the heavy and light chain in the anti-CD3 scFv, though this also decreased protein yield by 50%. Finally, we formally demonstrated with purified γδECTO-αCD3-dimers and -monomers, that γδECTO-αCD3-dimers are superior in function when compared to similar concentrations of monomers, and do not induce T cell activation without simultaneous tumor engagement. In conclusion, a γδECTO-αCD3-dimer based GAB design has great potential, though protein production needs to be further optimized before preclinical and clinical testing.


Asunto(s)
Neoplasias , Anticuerpos de Cadena Única , Humanos , Complejo CD3/metabolismo , Complejo Receptor-CD3 del Antígeno de Linfocito T , Neoplasias/tratamiento farmacológico , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/farmacología , Anticuerpos de Cadena Única/química , Activación de Linfocitos , Butirofilinas , Antígenos CD
7.
Mol Ther Methods Clin Dev ; 22: 388-400, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34514030

RESUMEN

T cell engineering strategies offer cures to patients and have entered clinical practice with chimeric antibody-based receptors; αßT cell receptor (αßTCR)-based strategies are, however, lagging behind. To allow a more rapid and successful translation to successful concepts also using αßTCRs for engineering, incorporating a method for the purification of genetically modified T cells, as well as engineered T cell deletion after transfer into patients, could be beneficial. This would allow increased efficacy, reduced potential side effects, and improved safety of newly to-be-tested lead structures. By characterizing the antigen-binding interface of a good manufacturing process (GMP)-grade anti-αßTCR antibody, usually used for depletion of αßT cells from stem cell transplantation products, we developed a strategy that allows for the purification of untouched αßTCR-engineered immune cells by changing 2 amino acids only in the TCRß chain constant domain of introduced TCR chains. Alternatively, we engineered an antibody that targets an extended mutated interface of 9 amino acids in the TCRß chain constant domain and provides the opportunity to further develop depletion strategies of engineered immune cells.

8.
J Clin Invest ; 130(9): 4637-4651, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484803

RESUMEN

γ9δ2T cells play a major role in cancer immune surveillance, yet the clinical translation of their in vitro promise remains challenging. To address limitations of previous clinical attempts using expanded γ9δ2T cells, we explored the clonal diversity of γ9δ2T cell repertoires and characterized their target. We demonstrated that only a fraction of expanded γ9δ2T cells was active against cancer cells and that activity of the parental clone, or functional avidity of selected γ9δ2 T cell receptors (γ9δ2TCRs), was not associated with clonal frequency. Furthermore, we analyzed the target-receptor interface and provided a 2-receptor, 3-ligand model. We found that activation was initiated by binding of the γ9δ2TCR to BTN2A1 through the regions between CDR2 and CDR3 of the TCR γ chain and modulated by the affinity of the CDR3 region of the TCRδ chain, which was phosphoantigen independent (pAg independent) and did not depend on CD277. CD277 was secondary, serving as a mandatory coactivating ligand. We found that binding of CD277 to its putative ligand did not depend on the presence of γ9δ2TCR, did depend on usage of the intracellular CD277, created pAg-dependent proximity to BTN2A1, enhanced cell-cell conjugate formation, and stabilized the immunological synapse (IS). This process critically depended on the affinity of the γ9δ2TCR and required membrane flexibility of the γ9δ2TCR and CD277, facilitating their polarization and high-density recruitment during IS formation.


Asunto(s)
Proliferación Celular , Activación de Linfocitos , Modelos Inmunológicos , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Antígenos de Neoplasias/inmunología , Butirofilinas/inmunología , Humanos , Células Jurkat , Proteínas de Neoplasias/inmunología , Neoplasias/patología , Linfocitos T/patología
9.
Cancer Immunol Res ; 8(4): 530-543, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019779

RESUMEN

γδ T cells in human solid tumors remain poorly defined. Here, we describe molecular and functional analyses of T-cell receptors (TCR) from tumor-infiltrating γδ T lymphocytes (γδ TIL) that were in direct contact with tumor cells in breast cancer lesions from archival material. We observed that the majority of γδ TILs harbored a proinflammatory phenotype and only a minority associated with the expression of IL17. We characterized TCRγ or TCRδ chains of γδ TILs and observed a higher proportion of Vδ2+ T cells compared with other tumor types. By reconstructing matched Vδ2- TCRγ and TCRδ pairs derived from single-cell sequencing, our data suggest that γδ TILs could be active against breast cancer and other tumor types. The reactivity pattern against tumor cells depended on both the TCRγ and TCRδ chains and was independent of additional costimulation through other innate immune receptors. We conclude that γδ TILs can mediate tumor reactivity through their individual γδ TCR pairs and that engineered T cells expressing TCRγ and δ chains derived from γδ TILs display potent antitumor reactivity against different cancer cell types and, thus, may be a valuable tool for engineering immune cells for adoptive cell therapies.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Leucocitos Mononucleares/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Subgrupos de Linfocitos T/inmunología , Neoplasias de la Mama Triple Negativas/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Línea Celular Tumoral , Técnicas de Cocultivo , Femenino , Voluntarios Sanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/terapia
10.
mBio ; 7(6)2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27965447

RESUMEN

Alpaca-derived single-domain antibody fragments (VHHs) that target the influenza A virus nucleoprotein (NP) can protect cells from infection when expressed in the cytosol. We found that one such VHH, αNP-VHH1, exhibits antiviral activity similar to that of Mx proteins by blocking nuclear import of incoming viral ribonucleoproteins (vRNPs) and viral transcription and replication in the nucleus. We determined a 3.2-Å crystal structure of αNP-VHH1 in complex with influenza A virus NP. The VHH binds to a nonconserved region on the body domain of NP, which has been associated with binding to host factors and serves as a determinant of host range. Several of the NP/VHH interface residues determine sensitivity of NP to antiviral Mx GTPases. The structure of the NP/αNP-VHH1 complex affords a plausible explanation for the inhibitory properties of the VHH and suggests a rationale for the antiviral properties of Mx proteins. Such knowledge can be leveraged for much-needed novel antiviral strategies. IMPORTANCE: Influenza virus strains can rapidly escape from protection afforded by seasonal vaccines or acquire resistance to available drugs. Additional ways to interfere with the virus life cycle are therefore urgently needed. The influenza virus nucleoprotein is one promising target for antiviral interventions. We have previously isolated alpaca-derived single-domain antibody fragments (VHHs) that protect cells from influenza virus infection if expressed intracellularly. We show here that one such VHH exhibits antiviral activities similar to those of proteins of the cellular antiviral defense (Mx proteins). We determined the three-dimensional structure of this VHH in complex with the influenza virus nucleoprotein and identified the interaction site, which overlaps regions that determine sensitivity of the virus to Mx proteins. Our data define a new vulnerability of influenza virus, help us to better understand the cellular antiviral mechanisms, and provide a well-characterized tool to further study them.


Asunto(s)
Virus de la Influenza A/inmunología , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/inmunología , Anticuerpos de Dominio Único/inmunología , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/inmunología , Transporte Activo de Núcleo Celular , Animales , Antivirales/farmacología , Camélidos del Nuevo Mundo/inmunología , Núcleo Celular/virología , Cristalografía por Rayos X , Humanos , Virus de la Influenza A/química , Conformación Molecular , Proteínas de Resistencia a Mixovirus/química , Proteínas de Resistencia a Mixovirus/metabolismo , Proteínas de la Nucleocápside , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas del Núcleo Viral/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...