Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Clin Endocrinol Metab ; 109(2): 389-401, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37690115

RESUMEN

CONTEXT: Glycogen storage disease type Ia (GSDIa) is an inborn metabolic disorder characterized by impaired endogenous glucose production (EGP). Monitoring of patients with GSDIa is prioritized because of ongoing treatment developments. Stable isotope tracers may enable reliable EGP monitoring. OBJECTIVE: The aim of this study was to prospectively assess the rate of appearance of endogenous glucose into the bloodstream (Ra) in patients with GSDIa after a single oral D-[6,6-2H2]-glucose dose. METHODS: Ten adult patients with GSDIa and 10 age-, sex-, and body mass index-matched healthy volunteers (HVs) were enrolled. For each participant, 3 oral glucose tracer tests were performed: (1) preprandial/fasted, (2) postprandial, and (3) randomly fed states. Dried blood spots were collected before D-[6,6-2H2]-glucose administration and 10, 20, 30, 40, 50, 60, 75, 90, and 120 minutes thereafter. RESULTS: Glucose Ra in fasted HVs was consistent with previously reported data. The time-averaged glucose Ra was significantly higher in (1) preprandial/fasted patients with GSDIa than HV and (2) postprandial HV compared with fasted HV(P < .05). A progressive decrease in glucose Ra was observed in preprandial/fasted patients with GSDIa; the change in glucose Ra time-course was directly correlated with the change in capillary glucose (P < .05). CONCLUSION: This is the first study to quantify glucose Ra in patients with GSDIa using oral D-[6,6-2H2] glucose. The test can reliably estimate EGP under conditions in which fasting tolerance is unaffected but does not discriminate between relative contributions of EGP (eg, liver, kidney) and exogenous sources (eg, dietary cornstarch). Future application is warranted for longitudinal monitoring after novel genome based treatments in patients with GSDIa in whom nocturnal dietary management can be discontinued.


Asunto(s)
Glucosa , Enfermedad del Almacenamiento de Glucógeno Tipo I , Adulto , Humanos , Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hígado/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Glucemia/metabolismo
2.
Biomedicines ; 11(9)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37760936

RESUMEN

Bile acids (BAs) and their signaling pathways have been identified as therapeutic targets for liver and metabolic diseases. We generated Cyp2c70-/- (KO) mice that were not able to convert chenodeoxycholic acid into rodent-specific muricholic acids (MCAs) and, hence, possessed a more hydrophobic, human-like BA pool. Recently, we have shown that KO mice display cholangiopathic features with the development of liver fibrosis. The aim of this study was to determine whether BA sequestration modulates liver pathology in Western type-diet (WTD)-fed KO mice. The BA sequestrant colesevelam was mixed into the WTD (2% w/w) of male Cyp2c70+/+ (WT) and KO mice and the effects were evaluated after 3 weeks of treatment. Colesevelam increased fecal BA excretion in WT and KO mice and reduced the hydrophobicity of biliary BAs in KO mice. Colesevelam ameliorated diet-induced hepatic steatosis in WT mice, whereas KO mice were resistant to diet-induced steatosis and BA sequestration had no additional effects on liver fat content. Total cholesterol concentrations in livers of colesevelam-treated WT and KO mice were significantly lower than those of untreated controls. Of particular note, colesevelam treatment normalized plasma levels of liver damage markers in KO mice and markedly decreased hepatic mRNA levels of fibrogenesis-related genes in KO mice. Lastly, colesevelam did not affect glucose excursions and insulin sensitivity in WT or KO mice. Our data show that BA sequestration ameliorates liver pathology in Cyp2c70-/- mice with a human-like bile acid composition without affecting insulin sensitivity.

3.
EBioMedicine ; 96: 104809, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37738832

RESUMEN

BACKGROUND: The intestine of children with severe malnutrition (SM) shows structural and functional changes that are linked to increased infection and mortality. SM dysregulates the tryptophan-kynurenine pathway, which may impact processes such as SIRT1- and mTORC1-mediated autophagy and mitochondrial homeostasis. Using a mouse and organoid model of SM, we studied the repercussions of these dysregulations on malnutrition enteropathy and the protective capacity of maintaining autophagy activity and mitochondrial health. METHODS: SM was induced through feeding male weanling C57BL/6 mice a low protein diet (LPD) for 14-days. Mice were either treated with the NAD+-precursor, nicotinamide; an mTORC1-inhibitor, rapamycin; a SIRT1-activator, resveratrol; or SIRT1-inhibitor, EX-527. Malnutrition enteropathy was induced in enteric organoids through amino-acid deprivation. Features of and pathways to malnutrition enteropathy were examined, including paracellular permeability, nutrient absorption, and autophagic, mitochondrial, and reactive-oxygen-species (ROS) abnormalities. FINDINGS: LPD-feeding and ensuing low-tryptophan availability led to villus atrophy, nutrient malabsorption, and intestinal barrier dysfunction. In LPD-fed mice, nicotinamide-supplementation was linked to SIRT1-mediated activation of mitophagy, which reduced damaged mitochondria, and improved intestinal barrier function. Inhibition of mTORC1 reduced intestinal barrier dysfunction and nutrient malabsorption. Findings were validated and extended using an organoid model, demonstrating that resolution of mitochondrial ROS resolved barrier dysfunction. INTERPRETATION: Malnutrition enteropathy arises from a dysregulation of the SIRT1 and mTORC1 pathways, leading to disrupted autophagy, mitochondrial homeostasis, and ROS. Whether nicotinamide-supplementation in children with SM could ameliorate malnutrition enteropathy should be explored in clinical trials. FUNDING: This work was supported by the Bill and Melinda Gates Foundation, the Sickkids Research Institute, the Canadian Institutes of Health Research, and the University Medical Center Groningen.

4.
Diabetes ; 72(7): 872-883, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37204269

RESUMEN

Diet modulates the development of insulin resistance during aging. This includes tissue-specific alterations in insulin signaling and mitochondrial function, which ultimately affect glucose homeostasis. Exercise stimulates glucose clearance and mitochondrial lipid oxidation and also enhances insulin sensitivity (IS). It is not well known how exercise interacts with age and diet in the development of insulin resistance. To investigate this, oral glucose tolerance tests with tracers were conducted in mice ranging from 4 to 21 months of age, fed a low-fat diet (LFD) or high-fat diet (HFD) with or without life-long voluntary access to a running wheel (RW). We developed a computational model to derive glucose fluxes, which were commensurate with independent values from steady-state tracer infusions. Values for an IS index derived for peripheral tissues (IS-P) and one for the liver (IS-L) were steeply decreased by aging and an HFD. This preceded the age-dependent decline in the mitochondrial capacity to oxidize lipids. In young animals fed an LFD, RW access enhanced the IS-P concomitantly with the muscle ß-oxidation capacity. Surprisingly, RW access completely prevented the age-dependent IS-L decrease; however this only occurred in animals fed an LFD. Therefore, this study indicates that endurance exercise can improve the age-dependent decline in organ-specific IS if paired with a healthy diet. ARTICLE HIGHLIGHTS: Exercise is a known strategy to improve insulin sensitivity (IS), whereas aging and a lipid-rich diet decrease IS. Using a tracer-based oral glucose tolerance test, we investigated how exercise, age, and diet interact in the development of tissue-specific insulin resistance. Exercise (voluntary access to a running wheel) mainly improved IS in animals fed a low-fat diet. In these animals, exercise improved peripheral IS only at young age but fully prevented the age-dependent decline of hepatic IS. The prevention of age-dependent decline in IS by exercise is tissue-specific and blunted by a lipid-rich diet.


Asunto(s)
Resistencia a la Insulina , Insulina , Ratones , Animales , Resistencia a la Insulina/fisiología , Prueba de Tolerancia a la Glucosa , Dieta Alta en Grasa , Glucosa , Insulina Regular Humana , Lípidos , Ratones Endogámicos C57BL
5.
Diabetes ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37094362

RESUMEN

Diet modulates the development of insulin resistance during aging. This includes tissue-specific alterations in insulin signaling and mitochondrial function, which ultimately affect glucose homeostasis. Exercise stimulates glucose clearance, mitochondrial lipid oxidation and enhances insulin sensitivity. It is not well known how exercise interacts with age and diet in the development of insulin resistance. To investigate this, oral glucose tolerance tests (OGTT) with a tracer were conducted in mice ranging from 4 to 21 months of age, fed a low- (LFD) or high-fat diet (HFD), with or without life-long voluntary access to a running wheel (RW). We developed a computational model to derive glucose fluxes, which were commensurate with independent values from steady-state tracer infusions. Both insulin sensitivity indices derived for peripheral tissues and liver (IS-P and IS-L, respectively) were steeply decreased by aging and a HFD. This preceded the age-dependent decline in the mitochondrial capacity to oxidize lipids. In LFD young animals, RW access enhanced the IS-P concomitantly with the muscle ß- oxidation capacity. Surprisingly, RW access completely prevented the age-dependent IS-L decrease, but only in LFD animals. This study indicates, therefore, that endurance exercise can improve the age-dependent decline in organ-specific IS mostly in the context of a healthy diet.

6.
Eur J Clin Nutr ; 77(7): 741-747, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36944719

RESUMEN

BACKGROUND: Previous research has shown the efficacy of mulberry extracts for lowering post-prandial glucose (PPG) responses. The postulated mechanism is slowing of glucose absorption, but effects on glucose disposal or endogenous production are also possible. This research assessed the effect of a specified mulberry fruit extract (MFE) on these three glucose flux parameters. METHODS: The study used a double-blind, randomized, controlled, full cross-over design. In 3 counter-balanced treatments, 12 healthy adult male subjects, mean (SD) age 24.9 (2.50) years and body mass index 22.5 (1.57) kg/m2, consumed porridge prepared from 13C-labelled wheat, with or without addition of 0.75 g MFE, or a solution of 13C-glucose in water. A co-administered 2H-glucose venous infusion allowed for assessment of glucose disposal. Glucose flux parameters, cumulative absorption (time to 50% absorption, T50%abs), and PPG positive incremental area under the curve from 0 to 120 min (+iAUC0-120) were determined from total and isotopically labelled glucose in plasma. As this exploratory study was not powered for formal inferential statistical tests, results are reported as the mean percent difference (or minutes for T50%abs) between treatments with 95% CI. RESULTS: MFE increased mean T50%abs by 10.2 min, (95% CI 3.9-16.5 min), and reduced mean 2 h post-meal rate of glucose appearance by 8.4% (95% CI -14.9 to -1.4%) and PPG + iAUC0-120 by 11% (95% CI -26.3 to -7.3%), with no significant changes in glucose disposal or endogenous production. CONCLUSIONS: The PPG-lowering effect of MFE is primarily mediated by a reduced rate of glucose uptake.


Asunto(s)
Glucosa , Morus , Adulto , Humanos , Masculino , Adulto Joven , Glucemia , Triticum , Frutas , Insulina , Extractos Vegetales/farmacología , Isótopos , Sujetos de Investigación , Estudios Cruzados , Periodo Posprandial
7.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36835544

RESUMEN

Bile acids facilitate the intestinal absorption of dietary lipids and act as signalling molecules in the maintenance of metabolic homeostasis. Farnesoid X receptor (FXR) is a bile acid-responsive nuclear receptor involved in bile acid metabolism, as well as lipid and glucose homeostasis. Several studies have suggested a role of FXR in the control of genes regulating intestinal glucose handling. We applied a novel dual-label glucose kinetic approach in intestine-specific FXR-/- mice (iFXR-KO) to directly assess the role of intestinal FXR in glucose absorption. Although iFXR-KO mice showed decreased duodenal expression of hexokinase 1 (Hk1) under obesogenic conditions, the assessment of glucose fluxes in these mice did not show a role for intestinal FXR in glucose absorption. FXR activation with the specific agonist GS3972 induced Hk1, yet the glucose absorption rate remained unaffected. FXR activation increased the duodenal villus length in mice treated with GS3972, while stem cell proliferation remained unaffected. Accordingly, iFXR-KO mice on either chow, short or long-term HFD feeding displayed a shorter villus length in the duodenum compared to wild-type mice. These findings indicate that delayed glucose absorption reported in whole-body FXR-/- mice is not due to the absence of intestinal FXR. Yet, intestinal FXR does have a role in the small intestinal surface area.


Asunto(s)
Glucosa , Intestinos , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Glucosa/metabolismo , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal
8.
Nutrients ; 14(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36432620

RESUMEN

Within the human population, considerable variability exists between individuals in their susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both genetic and environmental variation. APOE*3-Leiden.CETP mice, as part of an inbred mouse model in which mice develop the metabolic syndrome upon being fed a high-fat high-cholesterol diet, show large inter-individual variation in the parameters of the metabolic syndrome, despite a lack of genetic and environmental variation. In the present study, we set out to resolve what mechanisms could underlie this variation. We used measurements of glucose and lipid metabolism from a six-month longitudinal study on the development of the metabolic syndrome. Mice were classified as mice with either high plasma triglyceride (responders) or low plasma triglyceride (non-responders) at the baseline. Subsequently, we fitted the data to a dynamic computational model of whole-body glucose and lipid metabolism (MINGLeD) by making use of a hybrid modelling method called Adaptations in Parameter Trajectories (ADAPT). ADAPT integrates longitudinal data, and predicts how the parameters of the model must change through time in order to comply with the data and model constraints. To explain the phenotypic variation in plasma triglycerides, the ADAPT analysis suggested a decreased cholesterol absorption, higher energy expenditure and increased fecal fatty acid excretion in non-responders. While decreased cholesterol absorption and higher energy expenditure could not be confirmed, the experimental validation demonstrated that the non-responders were indeed characterized by increased fecal fatty acid excretion. Furthermore, the amount of fatty acids excreted strongly correlated with bile acid excretion, in particular deoxycholate. Since bile acids play an important role in the solubilization of lipids in the intestine, these results suggest that variation in bile acid homeostasis may in part drive the phenotypic variation in the APOE*3-Leiden.CETP mice.


Asunto(s)
Apolipoproteína E3 , Proteínas de Transferencia de Ésteres de Colesterol , Dieta Alta en Grasa , Síndrome Metabólico , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Proteínas de Transferencia de Ésteres de Colesterol/genética , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Estudios Longitudinales , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Fenotipo , Análisis de Sistemas , Triglicéridos , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo
9.
J Clin Invest ; 132(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36107630

RESUMEN

BACKGROUNDCytochrome P450 family 8 subfamily B member 1 (CYP8B1) generates 12α-hydroxylated bile acids (BAs) that are associated with insulin resistance in humans.METHODSTo determine whether reduced CYP8B1 activity improves insulin sensitivity, we sequenced CYP8B1 in individuals without diabetes and identified carriers of complete loss-of-function (CLOF) mutations utilizing functional assays.RESULTSMutation carriers had lower plasma 12α-hydroxylated/non-12α-hydroxylated BA and cholic acid (CA)/chenodeoxycholic acid (CDCA) ratios compared with age-, sex-, and BMI-matched controls. During insulin clamps, hepatic glucose production was suppressed to a similar magnitude by insulin, but glucose infusion rates to maintain euglycemia were higher in mutation carriers, indicating increased peripheral insulin sensitivity. Consistently, a polymorphic CLOF CYP8B1 mutation associated with lower fasting insulin in the AMP-T2D-GENES study. Exposure of primary human muscle cells to mutation-carrier CA/CDCA ratios demonstrated increased FOXO1 activity, and upregulation of both insulin signaling and glucose uptake, which were mediated by increased CDCA. Inhibition of FOXO1 attenuated the CDCA-mediated increase in muscle insulin signaling and glucose uptake. We found that reduced CYP8B1 activity associates with increased insulin sensitivity in humans.CONCLUSIONOur findings suggest that increased circulatory CDCA due to reduced CYP8B1 activity increases skeletal muscle insulin sensitivity, contributing to increased whole-body insulin sensitization.FUNDINGBiomedical Research Council/National Medical Research Council of Singapore.


Asunto(s)
Resistencia a la Insulina , Esteroide 12-alfa-Hidroxilasa , Humanos , Esteroide 12-alfa-Hidroxilasa/genética , Resistencia a la Insulina/genética , Insulina/genética , Haploinsuficiencia , Ácidos y Sales Biliares , Ácido Cólico , Glucosa
10.
Front Endocrinol (Lausanne) ; 13: 858832, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35789807

RESUMEN

Hypoglycemia results from an imbalance between glucose entering the blood compartment and glucose demand, caused by a defect in the mechanisms regulating postprandial glucose homeostasis. Hypoglycemia represents one of the most common metabolic emergencies in childhood, potentially leading to serious neurologic sequelae, including death. Therefore, appropriate investigation of its specific etiology is paramount to provide adequate diagnosis, specific therapy and prevent its recurrence. In the absence of critical samples for biochemical studies, etiological assessment of children with hypoglycemia may include dynamic methods, such as in vivo functional tests, and continuous glucose monitoring. By providing detailed information on actual glucose fluxes in vivo, proof-of-concept studies have illustrated the potential (clinical) application of dynamic stable isotope techniques to define biochemical and clinical phenotypes of inherited metabolic diseases associated with hypoglycemia. According to the textbooks, individuals with glycogen storage disease type I (GSD I) display the most severe hypoglycemia/fasting intolerance. In this review, three dynamic methods are discussed which may be considered during both diagnostic work-up and monitoring of children with hypoglycemia: 1) functional in vivo tests; 2) in vivo metabolic profiling by continuous glucose monitoring (CGM); 3) stable isotope techniques. Future applications and benefits of dynamic methods in children with hypoglycemia are also discussed.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Hipoglucemia , Glucemia , Ayuno , Glucosa , Humanos , Hipoglucemia/diagnóstico
11.
J Physiol ; 600(8): 1889-1911, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35156712

RESUMEN

Circulating bilirubin is associated with reduced serum cholesterol concentrations in humans and in hyperbilirubinaemic Gunn rats. However, mechanisms contributing to hypocholesterolaemia remain unknown. Therefore, this study aimed to investigate cholesterol synthesis, transport and excretion in mutant Gunn rats. Adult Gunn and control rats were assessed for daily faecal sterol excretion using metabolic cages, and water was supplemented with [1-13 C]-acetate to determine cholesterol synthesis. Bile was collected to measure biliary lipid secretion. Serum and liver were collected for biochemical analysis and for gene/protein expression using RT-qPCR and western blot, respectively. Additionally, serum was collected and analysed from juvenile rats. A significant interaction of sex, age and phenotype on circulating lipids was found with adult female Gunn rats reporting significantly lower cholesterol and phospholipids. Female Gunn rats also demonstrated elevated cholesterol synthesis, greater biliary lipid secretion and increased total faecal cholesterol and bile acid excretion. Furthermore, they possessed increased hepatic low-density lipoprotein (LDL) receptor and SREBP2 expression. In contrast, there were no changes to sterol metabolism in adult male Gunn rats. This is the first study to demonstrate elevated faecal sterol excretion in female hyperbilirubinaemic Gunn rats. Increased sterol excretion creates a negative intestinal sterol balance that is compensated for by increased cholesterol synthesis and LDL receptor expression. Therefore, reduced circulating cholesterol is potentially caused by increased hepatic uptake via the LDL receptor. Future studies are required to further evaluate the sexual dimorphism of this response and whether similar findings occur in females with benign unconjugated hyperbilirubinaemia (Gilbert's syndrome). KEY POINTS: Female adult hyperbilirubinaemic (Gunn) rats demonstrated lower circulating cholesterol, corroborating human studies that report a negative association between bilirubin and cholesterol concentrations. Furthermore, female Gunn rats had elevated sterol excretion creating a negative intestinal sterol balance that was compensated for by elevated cholesterol synthesis and increased hepatic low-density lipoprotein (LDL) receptor expression. Therefore, elevated LDL receptor expression potentially leads to reduced circulating cholesterol levels in female Gunn rats providing an explanation for the hypocholesterolaemia observed in humans with elevated bilirubin levels. This study also reports a novel interaction of sex with the hyperbilirubinaemic phenotype on sterol metabolism because changes were only reported in females and not in male Gunn rats. Future studies are required to further evaluate the sexual dimorphism of this response and whether similar findings occur in females with benign unconjugated hyperbilirubinaemia (Gilbert's syndrome).


Asunto(s)
Enfermedad de Gilbert , Hipercolesterolemia , Animales , Bilirrubina/metabolismo , Colesterol/metabolismo , Femenino , Enfermedad de Gilbert/metabolismo , Hiperbilirrubinemia/metabolismo , Hipercolesterolemia/metabolismo , Lipoproteínas LDL/metabolismo , Hígado/metabolismo , Masculino , Ratas , Ratas Gunn , Receptores de LDL/genética , Receptores de LDL/metabolismo , Caracteres Sexuales , Esteroles/metabolismo
12.
Cell Metab ; 34(1): 171-183.e6, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986332

RESUMEN

Inexorable increases in insulin resistance, lipolysis, and hepatic glucose production (HGP) are hallmarks of type 2 diabetes. Previously, we showed that peripheral delivery of exogenous fibroblast growth factor 1 (FGF1) has robust anti-diabetic effects mediated by the adipose FGF receptor (FGFR) 1. However, its mechanism of action is not known. Here, we report that FGF1 acutely lowers HGP by suppressing adipose lipolysis. On a molecular level, FGF1 inhibits the cAMP-protein kinase A axis by activating phosphodiesterase 4D (PDE4D), which separates it mechanistically from the inhibitory actions of insulin via PDE3B. We identify Ser44 as an FGF1-induced regulatory phosphorylation site in PDE4D that is modulated by the feed-fast cycle. These findings establish the FGF1/PDE4 pathway as an alternate regulator of the adipose-HGP axis and identify FGF1 as an unrecognized regulator of fatty acid homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Humanos , Insulina/metabolismo , Lipólisis/fisiología
13.
J Inherit Metab Dis ; 44(4): 879-892, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33739445

RESUMEN

Prevention of hypertriglyceridemia is one of the biomedical targets in Glycogen Storage Disease type Ia (GSD Ia) patients, yet it is unclear how hypoglycemia links to plasma triglyceride (TG) levels. We analyzed whole-body TG metabolism in normoglycemic (fed) and hypoglycemic (fasted) hepatocyte-specific glucose-6-phosphatase deficient (L-G6pc-/- ) mice. De novo fatty acid synthesis contributed substantially to hepatic TG accumulation in normoglycemic L-G6pc-/- mice. In hypoglycemic conditions, enhanced adipose tissue lipolysis was the main driver of liver steatosis, supported by elevated free fatty acid concentrations in GSD Ia mice and GSD Ia patients. Plasma very-low-density lipoprotein (VLDL) levels were increased in GSD Ia patients and in normoglycemic L-G6pc-/- mice, and further elevated in hypoglycemic L-G6pc-/- mice. VLDL-TG secretion rates were doubled in normo- and hypoglycemic L-G6pc-/- mice, while VLDL-TG catabolism was selectively inhibited in hypoglycemic L-G6pc-/- mice. In conclusion, fasting-induced hypoglycemia in L-G6pc-/- mice promotes adipose tissue lipolysis and arrests VLDL catabolism. This mechanism likely contributes to aggravated liver steatosis and dyslipidemia in GSD Ia patients with poor glycemic control and may explain clinical heterogeneity in hypertriglyceridemia between GSD Ia patients.


Asunto(s)
Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Hipertrigliceridemia/etiología , Hipoglucemia/etiología , Lipoproteínas VLDL/metabolismo , Triglicéridos/metabolismo , Adulto , Anciano , Animales , Modelos Animales de Enfermedad , Hígado Graso/etiología , Femenino , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hepatocitos/metabolismo , Humanos , Hipertrigliceridemia/prevención & control , Hipoglucemia/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Persona de Mediana Edad
14.
Metabolism ; 117: 154711, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33493548

RESUMEN

BACKGROUND: Type 2 diabetes (T2DM) is an age-associated disease characterized by hyperglycemia due to insulin resistance and decreased beta-cell function. DNA damage accumulation has been associated with T2DM, but whether DNA damage plays a role in the pathogenesis of the disease is unclear. Here, we used mice deficient for the DNA excision-repair gene Ercc1 to study the impact of persistent endogenous DNA damage accumulation on energy metabolism, glucose homeostasis and beta-cell function. METHODS: ERCC1-XPF is an endonuclease required for multiple DNA repair pathways and reduced expression of ERCC1-XPF causes accelerated accumulation of unrepaired endogenous DNA damage and accelerated aging in humans and mice. In this study, energy metabolism, glucose metabolism, beta-cell function and insulin sensitivity were studied in Ercc1d/- mice, which model a human progeroid syndrome. RESULTS: Ercc1d/- mice displayed suppression of the somatotropic axis and altered energy metabolism. Insulin sensitivity was increased, whereas, plasma insulin levels were decreased in Ercc1d/- mice. Fasting induced hypoglycemia in Ercc1d/- mice, which was the result of increased glucose disposal. Ercc1d/- mice exhibit a significantly reduced beta-cell area, even compared to control mice of similar weight. Glucose-stimulated insulin secretion in vivo was decreased in Ercc1d/- mice. Islets isolated from Ercc1d/- mice showed increased DNA damage markers, decreased glucose-stimulated insulin secretion and increased susceptibility to apoptosis. CONCLUSION: Spontaneous DNA damage accumulation triggers an adaptive response resulting in improved insulin sensitivity. Loss of DNA repair, however, does negatively impacts beta-cell survival and function in Ercc1d/- mice.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Resistencia a la Insulina/genética , Células Secretoras de Insulina/fisiología , Insulina/genética , Envejecimiento/genética , Animales , Apoptosis/genética , Supervivencia Celular/genética , Daño del ADN/genética , Diabetes Mellitus Tipo 2/genética , Glucosa/genética , Masculino , Ratones , Ratones Endogámicos C57BL
15.
FEBS J ; 288(7): 2257-2277, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33089625

RESUMEN

Dietary protein restriction has been demonstrated to improve metabolic health under various conditions. However, the relevance of ageing and age-related decline in metabolic flexibility on the effects of dietary protein restriction has not been addressed. Therefore, we investigated the effect of short-term dietary protein restriction on metabolic health in young and aged mice. Young adult (3 months old) and aged (18 months old) C57Bl/6J mice were subjected to a 3-month dietary protein restriction. Outcome parameters included fibroblast growth factor 21 (FGF21) levels, muscle strength, glucose tolerance, energy expenditure (EE) and transcriptomics of brown and white adipose tissue (WAT). Here, we report that a low-protein diet had beneficial effects in aged mice by reducing some aspects of age-related metabolic decline. These effects were characterized by increased plasma levels of FGF21, browning of subcutaneous WAT, increased body temperature and EE, while no changes were observed in glucose homeostasis and insulin sensitivity. Moreover, the low-protein diet used in this study was well-tolerated in aged mice indicated by the absence of adverse effects on body weight, locomotor activity and muscle performance. In conclusion, our study demonstrates that a short-term reduction in dietary protein intake can impact age-related metabolic health alongside increased FGF21 signalling, without negatively affecting muscle function. These findings highlight the potential of protein restriction as a strategy to induce EE and browning of WAT in aged individuals.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Metabolismo Energético/genética , Factores de Crecimiento de Fibroblastos/genética , Factores de Edad , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Restricción Calórica , Proteínas en la Dieta/metabolismo , Humanos , Ratones , Transducción de Señal
16.
Br J Nutr ; 125(9): 961-971, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32616081

RESUMEN

Feeding mice in early life a diet containing an experimental infant milk formula (Nuturis®; eIMF), with a lipid structure similar to human milk, transiently lowered body weight (BW) and fat mass gain upon Western-style diet later in life, when compared with mice fed diets based on control IMF (cIMF). We tested the hypothesis that early-life eIMF feeding alters the absorption or the postabsorptive trafficking of dietary lipids in later life. Male C57BL/6JOlaHsd mice were fed eIMF/cIMF from postnatal day 16-42, followed by low- (LFD, American Institute of Nutrition (AIN)-93 G, 7 wt% fat) or high-fat diet (HFD, D12451, 24 wt% fat) until day 63-70. Lipid absorption rate and tissue concentrations were determined after intragastric administration of stable isotope (2H or 13C) labelled lipids in separate groups. Lipid enrichments in plasma and tissues were analysed using GC-MS. The rate of triolein absorption was similar between eIMF and cIMF fed LFD: 3·2 (sd 1·8) and 3·9 (sd 2·1) and HFD: 2·6 (sd 1·7) and 3·8 (sd 3·0) % dose/ml per h. Postabsorptive lipid trafficking, that is, concentrations of absorbed lipids in tissues, was similar in the eIMF and cIMF groups after LFD. Tissue levels of absorbed TAG after HFD feeding were lower in heart (-42 %) and liver (-46 %), and higher in muscle (+81 %, all P < 0·05) in eIMF-fed mice. In conclusion, early-life IMF diet affected postabsorptive trafficking of absorbed lipids after HFD, but not LFD. Changes in postabsorptive lipid trafficking could underlie the observed lower BW and body fat accumulation in later life upon a persistent long-term obesogenic challenge.


Asunto(s)
Dieta con Restricción de Grasas , Dieta Alta en Grasa , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/metabolismo , Fórmulas Infantiles , Metabolismo de los Lípidos , Fosfolípidos/administración & dosificación , Animales , Peso Corporal , Glucolípidos , Glicoproteínas , Humanos , Lactante , Fórmulas Infantiles/química , Absorción Intestinal , Gotas Lipídicas , Hígado/metabolismo , Masculino , Ratones , Músculos/metabolismo , Miocardio/metabolismo
17.
Hepatology ; 72(5): 1638-1653, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32083759

RESUMEN

BACKGROUND AND AIMS: Glycogen storage disease (GSD) type 1a is an inborn error of metabolism caused by defective glucose-6-phosphatase catalytic subunit (G6PC) activity. Patients with GSD 1a exhibit severe hepatomegaly due to glycogen and triglyceride (TG) accumulation in the liver. We have shown that the activity of carbohydrate response element binding protein (ChREBP), a key regulator of glycolysis and de novo lipogenesis, is increased in GSD 1a. In the current study, we assessed the contribution of ChREBP to nonalcoholic fatty liver disease (NAFLD) development in a mouse model for hepatic GSD 1a. APPROACH AND RESULTS: Liver-specific G6pc-knockout (L-G6pc-/- ) mice were treated with adeno-associated viruses (AAVs) 2 or 8 directed against short hairpin ChREBP to normalize hepatic ChREBP activity to levels observed in wild-type mice receiving AAV8-scrambled short hairpin RNA (shSCR). Hepatic ChREBP knockdown markedly increased liver weight and hepatocyte size in L-G6pc-/- mice. This was associated with hepatic accumulation of G6P, glycogen, and lipids, whereas the expression of glycolytic and lipogenic genes was reduced. Enzyme activities, flux measurements, hepatic metabolite analysis and very low density lipoprotein (VLDL)-TG secretion assays revealed that hepatic ChREBP knockdown reduced downstream glycolysis and de novo lipogenesis but also strongly suppressed hepatic VLDL lipidation, hence promoting the storage of "old fat." Interestingly, enhanced VLDL-TG secretion in shSCR-treated L-G6pc-/- mice associated with a ChREBP-dependent induction of the VLDL lipidation proteins microsomal TG transfer protein and transmembrane 6 superfamily member 2 (TM6SF2), the latter being confirmed by ChIP-qPCR. CONCLUSIONS: Attenuation of hepatic ChREBP induction in GSD 1a liver aggravates hepatomegaly because of further accumulation of glycogen and lipids as a result of reduced glycolysis and suppressed VLDL-TG secretion. TM6SF2, critical for VLDL formation, was identified as a ChREBP target in mouse liver. Altogether, our data show that enhanced ChREBP activity limits NAFLD development in GSD 1a by balancing hepatic TG production and secretion.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Glucosa-6-Fosfatasa/genética , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Glucólisis , Hepatocitos , Humanos , Lipogénesis , Lipoproteínas VLDL/metabolismo , Masculino , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , ARN Interferente Pequeño/genética , Triglicéridos/metabolismo
18.
J Lipid Res ; 60(9): 1562-1572, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31324653

RESUMEN

Transintestinal cholesterol excretion (TICE) is a major route for eliminating cholesterol from the body and a potential therapeutic target for hypercholesterolemia. The underlying mechanism, however, is largely unclear, and its contribution to cholesterol disposal from the body is obscured by the counteracting process of intestinal cholesterol reabsorption. To determine the quantity of TICE independent from its reabsorption, we studied two models of decreased intestinal cholesterol absorption. Cholesterol absorption was inhibited either by ezetimibe or, indirectly, by the genetic inactivation of the intestinal apical sodium-dependent bile acid transporter (ASBT; SLC10A2). Both ezetimibe treatment and Asbt inactivation virtually abrogated fractional cholesterol absorption (from 46% to 4% and 6%, respectively). In both models, fecal neutral sterol excretion and net intestinal cholesterol balance were considerably higher than in control mice (5- and 7-fold, respectively), suggesting that, under physiological conditions, TICE is largely reabsorbed. In addition, the net intestinal cholesterol balance was increased to a similar extent but was not further increased when the models were combined, suggesting that the effect on cholesterol reabsorption was already maximal under either condition alone. On the basis of these findings, we hypothesize that the inhibition of cholesterol (re)absorption combined with stimulating TICE will be most effective in increasing cholesterol disposal.


Asunto(s)
Colesterol/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Ezetimiba/farmacología , Femenino , Absorción Intestinal/fisiología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transportadores de Anión Orgánico Sodio-Dependiente/deficiencia , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/deficiencia , Simportadores/genética
19.
Endocrinology ; 160(10): 2367-2387, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31265057

RESUMEN

Prolonged exposure to glucocorticoids (GCs) causes various metabolic derangements. These include obesity and insulin resistance, as inhibiting glucose utilization in adipose tissues is a major function of GCs. Although adipose tissue distribution and glucose homeostasis are sex-dependently regulated, it has not been evaluated whether GCs affect glucose metabolism and adipose tissue functions in a sex-dependent manner. In this study, high-dose corticosterone (rodent GC) treatment in C57BL/6J mice resulted in nonfasting hyperglycemia in male mice only, whereas both sexes displayed hyperinsulinemia with normal fasting glucose levels, indicative of insulin resistance. Metabolic testing using stable isotope-labeled glucose techniques revealed a sex-specific corticosterone-driven glucose intolerance. Corticosterone treatment increased adipose tissue mass in both sexes, which was reflected by elevated serum leptin levels. However, female mice showed more metabolically protective adaptations of adipose tissues than did male mice, demonstrated by higher serum total and high-molecular-weight adiponectin levels, more hyperplastic morphological changes, and a stronger increase in mRNA expression of adipogenic differentiation markers. Subsequently, in vitro studies in 3T3-L1 (white) and T37i (brown) adipocytes suggest that the increased leptin and adiponectin levels were mainly driven by the elevated insulin levels. In summary, this study demonstrates that GC-induced insulin resistance is more severe in male mice than in female mice, which can be partially explained by a sex-dependent adaptation of adipose tissues.


Asunto(s)
Glucemia/metabolismo , Corticosterona/toxicidad , Resistencia a la Insulina , Proteínas Proto-Oncogénicas c-akt/metabolismo , Adipoquinas/genética , Adipoquinas/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tejido Adiposo/efectos de los fármacos , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Insulina/farmacología , Leptina/genética , Leptina/metabolismo , Masculino , Ratones , Factores Sexuales
20.
J Lipid Res ; 60(9): 1547-1561, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31253637

RESUMEN

The bile acid-activated nuclear receptor, FXR (NR1H4), has been implicated in the control of lipid and energy metabolism, but its role in fat tissue, where it is moderately expressed, is not understood. In view of the recent development of FXR-targeting therapeutics for treatment of human metabolic diseases, understanding the tissue-specific actions of FXR is essential. Transgenic mice expressing human FXR in adipose tissue (aP2-hFXR mice) at three to five times higher levels than endogenous Fxr, i.e., much lower than its expression in liver and intestine, have markedly enlarged adipocytes and show extensive extracellular matrix remodeling. Ageing and exposure to obesogenic conditions revealed a strongly limited capacity for adipose expansion and development of fibrosis in adipose tissues of aP2-hFXR transgenic mice. This was associated with impaired lipid storage capacity, leading to elevated plasma free fatty acids and ectopic fat deposition in liver and muscle as well as whole-body insulin resistance. These studies establish that adipose FXR is a determinant of adipose tissue architecture and contributes to whole-body lipid homeostasis.


Asunto(s)
Tejido Adiposo/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Adipocitos/metabolismo , Envejecimiento/fisiología , Animales , Peso Corporal/fisiología , Dieta Alta en Grasa/efectos adversos , Matriz Extracelular/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/fisiología , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...