Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Planta ; 251(4): 75, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32146566

RESUMEN

MAIN CONCLUSION: Carbonic anhydrases CA1 and CA4 attenuate plant immunity and can contribute to altered disease resistance levels in response to changing atmospheric CO2 conditions. ß-Carbonic anhydrases (CAs) play an important role in CO2 metabolism and plant development, but have also been implicated in plant immunity. Here we show that the bacterial pathogen Pseudomonas syringae and application of the microbe-associated molecular pattern (MAMP) flg22 repress CA1 and CA4 gene expression in Arabidopsis thaliana. Using the CA double-mutant ca1ca4, we provide evidence that CA1 and CA4 play an attenuating role in pathogen- and flg22-triggered immune responses. In line with this, ca1ca4 plants exhibited enhanced resistance against P. syringae, which was accompanied by an increased expression of the defense-related genes FRK1 and ICS1. Under low atmospheric CO2 conditions (150 ppm), when CA activity is typically low, the levels of CA1 transcription and resistance to P. syringae in wild-type Col-0 were similar to those observed in ca1ca4. However, under ambient (400 ppm) and elevated (800 ppm) atmospheric CO2 conditions, CA1 transcription was enhanced and resistance to P. syringae reduced. Together, these results suggest that CA1 and CA4 attenuate plant immunity and that differential CA gene expression in response to changing atmospheric CO2 conditions contribute to altered disease resistance levels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Enfermedades de las Plantas , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Anhidrasas Carbónicas/genética , Resistencia a la Enfermedad , Inmunidad de la Planta , Pseudomonas syringae/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
2.
Curr Biol ; 29(22): 3913-3920.e4, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31668625

RESUMEN

The root microbiome consists of commensal, pathogenic, and plant-beneficial microbes [1]. Most members of the root microbiome possess microbe-associated molecular patterns (MAMPs) similar to those of plant pathogens [2]. Their recognition can lead to the activation of host immunity and suppression of plant growth due to growth-defense tradeoffs [3, 4]. We found that 42% of the tested root microbiota, including the plant growth-promoting rhizobacteria Pseudomonas capeferrum WCS358 [5, 6] and Pseudomonas simiae WCS417 [6, 7], are able to quench local Arabidopsis thaliana root immune responses that are triggered by flg22 [8], an immunogenic epitope of the MAMP flagellin [9], suggesting that this is an important function of the root microbiome. In a screen for WCS358 mutants that lost their capacity to suppress flg22-induced CYP71A12pro:GUS MAMP-reporter gene expression, we identified the bacterial genes pqqF and cyoB in WCS358, which are required for the production of gluconic acid and its derivative 2-keto gluconic acid. Both WCS358 mutants are impaired in the production of these organic acids and consequently lowered their extracellular pH to a lesser extent than wild-type WCS358. Acidification of the plant growth medium similarly suppressed flg22-induced CYP71A12pro:GUS and MYB51pro:GUS expression, and the flg22-mediated oxidative burst, suggesting a role for rhizobacterial gluconic acid-mediated modulation of the extracellular pH in the suppression of root immunity. Rhizosphere population densities of the mutants were significantly reduced compared to wild-type. Collectively, these findings show that suppression of immune responses is an important function of the root microbiome, as it facilitates colonization by beneficial root microbiota.


Asunto(s)
Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Concentración de Iones de Hidrógeno , Microbiota/genética , Microbiota/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Pseudomonas/patogenicidad , Rizosfera
3.
Plant Cell ; 29(9): 2086-2105, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28827376

RESUMEN

Jasmonic acid (JA) is a critical hormonal regulator of plant growth and defense. To advance our understanding of the architecture and dynamic regulation of the JA gene regulatory network, we performed a high-resolution RNA-seq time series of methyl JA-treated Arabidopsis thaliana at 15 time points over a 16-h period. Computational analysis showed that methyl JA (MeJA) induces a burst of transcriptional activity, generating diverse expression patterns over time that partition into distinct sectors of the JA response targeting specific biological processes. The presence of transcription factor (TF) DNA binding motifs correlated with specific TF activity during temporal MeJA-induced transcriptional reprogramming. Insight into the underlying dynamic transcriptional regulation mechanisms was captured in a chronological model of the JA gene regulatory network. Several TFs, including MYB59 and bHLH27, were uncovered as early network components with a role in pathogen and insect resistance. Analysis of subnetworks surrounding the TFs ORA47, RAP2.6L, MYB59, and ANAC055, using transcriptome profiling of overexpressors and mutants, provided insights into their regulatory role in defined modules of the JA network. Collectively, our work illuminates the complexity of the JA gene regulatory network, pinpoints and validates previously unknown regulators, and provides a valuable resource for functional studies on JA signaling components in plant defense and development.


Asunto(s)
Arabidopsis/genética , Ciclopentanos/metabolismo , Redes Reguladoras de Genes , Oxilipinas/metabolismo , Acetatos/farmacología , Animales , Secuencia de Bases , Ciclopentanos/farmacología , ADN de Plantas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Genes de Plantas , Insectos/fisiología , Familia de Multigenes , Motivos de Nucleótidos/genética , Oxilipinas/farmacología , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
4.
Mol Plant Microbe Interact ; 27(7): 603-10, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24654978

RESUMEN

Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant pathogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantly less virulent on both tomato and Arabidopsis thaliana. Moreover, infiltration of A. thaliana Col-0 leaves with DC3000 ΔaprA evoked a significantly higher level of expression of the defense-related genes FRK1 and PR-1 than did wild-type DC3000. In the flagellin receptor mutant fls2, pathogen virulence and defense-related gene activation did not differ between DC3000 and DC3000 ΔaprA. Together, these results suggest that AprA of DC3000 is important for evasion of recognition by the FLS2 receptor, allowing wild-type DC3000 to be more virulent on its host plant than AprA-deficient DC3000 ΔaprA. To provide further evidence for the role of DC3000 AprA in host immune evasion, we overexpressed the AprA inhibitory peptide AprI of DC3000 in A. thaliana to counteract the immune evasive capacity of DC3000 AprA. Ectopic expression of aprI in A. thaliana resulted in an enhanced level of resistance against wild-type DC3000, while the already elevated level of resistance against DC3000 ΔaprA remained unchanged. Together, these results indicate that evasion of host immunity by the alkaline protease AprA is important for full virulence of strain DC3000 and likely acts by preventing flagellin monomers from being recognized by its cognate immune receptor.


Asunto(s)
Arabidopsis/microbiología , Flagelina/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Pseudomonas syringae/fisiología , Serina Endopeptidasas/metabolismo , Solanum lycopersicum/microbiología , Regulación Enzimológica de la Expresión Génica , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/inmunología , Serina Endopeptidasas/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
5.
Dev Cell ; 26(4): 405-15, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23987513

RESUMEN

A critical issue in development is the coordination of the activity of stem cell niches with differentiation of their progeny to ensure coherent organ growth. In the plant root, these processes take place at opposite ends of the meristem and must be coordinated with each other at a distance. Here, we show that in Arabidopsis, the gene SCR presides over this spatial coordination. In the organizing center of the root stem cell niche, SCR directly represses the expression of the cytokinin-response transcription factor ARR1, which promotes cell differentiation, controlling auxin production via the ASB1 gene and sustaining stem cell activity. This allows SCR to regulate, via auxin, the level of ARR1 expression in the transition zone where the stem cell progeny leaves the meristem, thus controlling the rate of differentiation. In this way, SCR simultaneously controls stem cell division and differentiation, ensuring coherent root growth.


Asunto(s)
Arabidopsis/citología , Diferenciación Celular , Meristema/citología , Células Madre/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular/efectos de los fármacos , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/efectos de los fármacos , Meristema/metabolismo , Modelos Biológicos , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/genética , Células Madre/efectos de los fármacos , Células Madre/metabolismo
6.
BMC Genomics ; 12: 256, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21599977

RESUMEN

BACKGROUND: Phenotype-driven forward genetic experiments are powerful approaches for linking phenotypes to genomic elements but they still involve a laborious positional cloning process. Although sequencing of complete genomes now becomes available, discriminating causal mutations from the enormous amounts of background variation remains a major challenge. METHOD: To improve this, we developed a universal two-step approach, named 'fast forward genetics', which combines traditional bulk segregant techniques with targeted genomic enrichment and next-generation sequencing technology RESULTS: As a proof of principle we successfully applied this approach to two Arabidopsis mutants and identified a novel factor required for stem cell activity. CONCLUSION: We demonstrated that the 'fast forward genetics' procedure efficiently identifies a small number of testable candidate mutations. As the approach is independent of genome size, it can be applied to any model system of interest. Furthermore, we show that experiments can be multiplexed and easily scaled for the identification of multiple individual mutants in a single sequencing run.


Asunto(s)
Arabidopsis/genética , Meristema/genética , Análisis de Secuencia/métodos , Prueba de Complementación Genética , Genómica , Mutación , Fenotipo , Factores de Tiempo
7.
Curr Biol ; 20(5): 452-7, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20171102

RESUMEN

Cell divisions generating daughter cells different in size, shape, identity, and function are indispensable for many developmental processes including fate specification, tissue patterning, and self-renewal. In animals and yeast, perturbations in factors required for well-described asymmetric cell divisions generally yield cells of equal fate. Here we report on SCHIZORIZA (SCZ), a single nuclear factor with homology to heat-shock transcription factors that controls the separation of cell fate in a set of stem cells generating different root tissues: root cap, epidermis, cortex, and endodermis. Loss-of-function, expression, and reconstitution experiments indicate that SCZ acts mainly from within its cortical expression domain in the stem cell niche, exerting both autonomous and nonautonomous effects to specify cortex identity and control the separation of cell fates in surrounding layers. Thus, SCZ defines a novel pathway for asymmetric cell division in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mutación , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Madre/citología , Factores de Transcripción/genética
8.
Plant Physiol ; 135(2): 969-77, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15181208

RESUMEN

In resurrection plants and yeast, trehalose has a function in stress protection, but the absence of measurable amounts of trehalose in other plants precludes such a function. The identification of a trehalose biosynthetic pathway in angiosperms raises questions on the function of trehalose metabolism in nonresurrection plants. We previously identified a mutant in the Arabidopsis trehalose biosynthesis gene AtTPS1. Plants homozygous for the tps1 mutation do not develop mature seeds (Eastmond et al., 2002). AtTPS1 expression analysis and the spatial and temporal activity of its promoter suggest that this gene is active outside the seed-filling stage of development as well. A generally low expression is observed in all organs analyzed, peaking in metabolic sinks such as flower buds, ripening siliques, and young rosette leaves. The arrested tps1/tps1 embryonic state could be rescued using a dexamethasone-inducible AtTPS1 expression system enabling generation of homozygous mutant plants. When depleted in AtTPS1 expression, such mutant plants show reduced root growth, which is correlated with a reduced root meristematic region. Moreover, tps1/tps1 plants are retarded in growth and remain generative during their lifetime. Absence of Trehalose-6-Phosphate Synthase 1 in Arabidopsis plants precludes transition to flowering.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Glucosiltransferasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Flores/enzimología , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Mutación , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Análisis de Secuencia de ADN
9.
Plant Physiol ; 135(2): 879-90, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15181209

RESUMEN

Trehalose-6-phosphate (T6P) is required for carbon utilization during Arabidopsis development, and its absence is embryo lethal. Here we show that T6P accumulation inhibits seedling growth. Wild-type seedlings grown on 100 mm trehalose rapidly accumulate T6P and stop growing, but seedlings expressing Escherichia coli trehalose phosphate hydrolase develop normally on such medium. T6P accumulation likely results from much-reduced T6P dephosphorylation when trehalose levels are high. Metabolizable sugars added to trehalose medium rescue T6P inhibition of growth. In addition, Suc feeding leads to a progressive increase in T6P concentrations, suggesting that T6P control over carbon utilization is related to available carbon for growth. Expression analysis of genes from the Arabidopsis trehalose metabolism further supports this: Suc rapidly induces expression of trehalose phosphate synthase homolog AtTPS5 to high levels. In contrast, T6P accumulation after feeding trehalose in the absence of available carbon induces repression of genes encoding T6P synthases and expression of T6P phosphatases. To identify processes controlled by T6P, we clustered expression profile data from seedlings with altered T6P content. T6P levels correlate with expression of a specific set of genes, including the S6 ribosomal kinase ATPK19, independently of carbon status. Interestingly, Suc addition represses 15 of these genes, one of which is AtKIN11, encoding a Sucrose Non Fermenting 1 (SNF1)-related kinase known to play a role in Suc utilization.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Glucosiltransferasas/genética , Brotes de la Planta/crecimiento & desarrollo , Fosfatos de Azúcar/biosíntesis , Trehalosa/análogos & derivados , Trehalosa/biosíntesis , Trehalosa/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Disacaridasas/genética , Disacaridasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosiltransferasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Sacarosa/farmacología , Transcripción Genética/genética
10.
Proc Natl Acad Sci U S A ; 100(11): 6849-54, 2003 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-12748379

RESUMEN

Genes for trehalose metabolism are widespread in higher plants. Insight into the physiological role of the trehalose pathway outside of resurrection plant species is lacking. To address this lack of insight, we express Escherichia coli genes for trehalose metabolism in Arabidopsis thaliana, which manipulates trehalose 6-phosphate (T6P) contents in the transgenic plants. Plants expressing otsA [encoding trehalose phosphate synthase (TPS)] accumulate T6P whereas those expressing either otsB [encoding trehalose phosphate phosphatase (TPP)] or treC [encoding trehalose phosphate hydrolase (TPH)] contain low levels of T6P. Expression of treF (encoding trehalase) yields plants with unaltered T6P content and a phenotype not distinguishable from wild type when grown on soil. The marked phenotype obtained of plants accumulating T6P is opposite to that of plants with low T6P levels obtained by expressing either TPP or TPH and consistent with a critical role for T6P in growth and development. Supplied sugar strongly inhibits growth of plants with reduced T6P content and leads to accumulation of respiratory intermediates. Remarkably, sugar improves growth of TPS expressors over wild type, a feat not previously accomplished by manipulation of metabolism. The data indicate that the T6P intermediate of the trehalose pathway controls carbohydrate utilization and thence growth via control of glycolysis in a manner analogous to that in yeast. Furthermore, embryolethal A. thaliana tps1 mutants are rescued by expression of E. coli TPS, but not by supply of trehalose, suggesting that T6P control over primary metabolism is indispensable for development.


Asunto(s)
Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Trehalosa/metabolismo , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Cartilla de ADN
11.
Plant J ; 29(2): 225-35, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11851922

RESUMEN

Despite the recent discovery that trehalose synthesis is widespread in higher plants very little is known about its physiological significance. Here we report on an Arabidopsis mutant (tps1), disrupted in a gene encoding the first enzyme of trehalose biosynthesis (trehalose-6-phosphate synthase). The tps1 mutant is a recessive embryo lethal. Embryo morphogenesis is normal but development is retarded and stalls early in the phase of cell expansion and storage reserve accumulation. TPS1 is transiently up-regulated at this same developmental stage and is required for the full expression of seed maturation marker genes (2S2 and OLEOSN2). Sucrose levels also increase rapidly in seeds during the onset of cell expansion. In Saccharomyces cerevisiae trehalose-6-phosphate (T-6-P) is required to regulate sugar influx into glycolysis via the inhibition of hexokinase and a deficiency in TPS1 prevents growth on sugars (Thevelein and Hohmann, 1995). The growth of Arabidopsis tps1-1 embryos can be partially rescued in vitro by reducing the sucrose level. However, T-6-P is not an inhibitor of AtHXK1 or AtHXK2. Nor does reducing hexokinase activity rescue tps1-1 embryo growth. Our data establish for the first time that an enzyme of trehalose metabolism is essential in plants and is implicated in the regulation of sugar metabolism/embryo development via a different mechanism to that reported in S. cerevisiae.


Asunto(s)
Arabidopsis/metabolismo , Glucosiltransferasas/metabolismo , Semillas/metabolismo , Trehalosa/análogos & derivados , Trehalosa/biosíntesis , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Hexoquinasa/metabolismo , Mutación , Semillas/genética , Semillas/crecimiento & desarrollo , Sacarosa/metabolismo , Fosfatos de Azúcar/metabolismo , Trehalosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...