Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 903661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755685

RESUMEN

The introduction of Lupinus mutabilis (Andean lupin) in Europe will provide a new source of protein and oil for plant-based diets and biomass for bio-based products, while contributing to the improvement of marginal soils. This study evaluates for the first time the phenotypic variability of a large panel of L. mutabilis accessions both in their native environment and over two cropping conditions in Europe (winter crop in the Mediterranean region and summer crop in North-Central Europe), paving the way for the selection of accessions adapted to specific environments. The panel of 225 accessions included both germplasm pools from the Andean region and breeding lines from Europe. Notably, we reported higher grain yield in Mediterranean winter-cropping conditions (18 g/plant) than in the native region (9 g/plant). Instead, North European summer-cropping conditions appear more suitable for biomass production (up to 2 kg/plant). The phenotypic evaluation of 16 agronomical traits revealed significant variation in the panel. Principal component analyses pointed out flowering time, yield, and architecture-related traits as the main factors explaining variation between accessions. The Peruvian material stands out among the top-yielding accessions in Europe, characterized by early lines with high grain yield (e.g., LIB065, LIB072, and LIB155). Bolivian and Ecuadorian materials appear more valuable for the selection of genotypes for Andean conditions and for biomass production in Europe. We also observed that flowering time in the different environments is influenced by temperature accumulation. Within the panel, it is possible to identify both early and late genotypes, characterized by different thermal thresholds (600°C-700°C and 1,000-1,200°C GDD, respectively). Indications on top-yielding and early/late accessions, heritability of morpho-physiological traits, and their associations with grain yield are reported and remain largely environmental specific, underlining the importance of selecting useful genetic resources for specific environments. Altogether, these results suggest that the studied panel holds the genetic potential for the adaptation of L. mutabilis to Europe and provide the basis for initiating a breeding program based on exploiting the variation described herein.

2.
Front Plant Sci ; 11: 102, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153610

RESUMEN

Hemp (Cannabis sativa L.) is a bast-fiber crop well-known for the great potential to produce sustainable fibers. Nevertheless, hemp fiber quality is a complex trait, and little is known about the phenotypic variability and heritability of fiber quality traits in hemp. The aim of this study is to gain insights into the variability in fiber quality within the hemp germplasm and to estimate the genetic components, environmental components, and genotype-by-environment (G×E) interactions on fiber quality traits in hemp. To investigate these parameters, a panel of 123 hemp accessions was phenotyped for 28 traits relevant to fiber quality at three locations in Europe, corresponding to climates of northern, central, and southern Europe. In general, hemp cultivated in northern latitudes showed a larger plant vigor while earlier flowering was characteristic of plants cultivated in southern latitudes. Extensive variability between accessions was observed for all traits. Most cell wall components (contents of monosaccharides derived from cellulose and hemicellulose; and lignin content), bast fiber content, and flowering traits revealed large genetic components with low G×E interactions and high broad-sense heritability values, making these traits suitable to maximize the genetic gains of fiber quality. In contrast, contents of pectin-related monosaccharides, most agronomic traits, and several fiber traits (fineness and decortication efficiency) showed low genetic components with large G×E interactions affecting the rankings across locations. These results suggest that pectin, agronomic traits, and fiber traits are unsuitable targets in breeding programs of hemp, as their large G×E interactions might lead to unexpected phenotypes in untested locations. Furthermore, all environmental effects on the 28 traits were statistically significant, suggesting a strong adaptive behavior of fiber quality in hemp to specific environments. The high variability in fiber quality observed in the hemp panel, the broad range in heritability, and adaptability among all traits prescribe positive prospects for the development of new hemp cultivars of excellent fiber quality.

3.
Food Res Int ; 110: 3-10, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30029703

RESUMEN

During the 20th century, the economic position of oats (Avena sativa L.) decreased strongly in favour of higher yielding crops including winter wheat and maize. Presently, oat represents only ~1.3% of the total world grain production, and its production system is fragmented. Nonetheless, current interest is growing because of recent knowledge on its potential benefits in food, feed and agriculture. This perspective will serve as a further impetus, with special focus on the recently valued advantages of oats in human food and health. Five approved European Food Safety Authority (EFSA) health claims apply to oats. Four relate to the oat-specific soluble fibres, the beta-glucans, and concern the maintenance and reduction of blood cholesterol, better blood glucose balance and increased faecal bulk. The fifth claim concerns the high content of unsaturated fatty acids, especially present in the endosperm, which reduces the risks of heart and vascular diseases. Furthermore, oat starch has a low glycemic index, which is favourable for weight control. Oat-specific polyphenols and avenanthramides have antioxidant and anti-inflammatory properties. Thus, oats can contribute significantly to the presently recommended whole-grain diet. Next to globulins, oats contain a small fraction of prolamin storage proteins, called 'avenins', but at a much lower quantity than gluten proteins in wheat, barley and rye. Oat avenins do not contain any of the known coeliac disease epitopes from gluten of wheat, barley and rye. Long-term food studies confirm the safety of oats for coeliac disease patients and the positive health effects of oat products in a gluten-free diet. These effects are general and independent of oat varieties. In the EU (since 2009), the USA (since 2013) and Canada (since 2015) oat products may be sold as gluten-free provided that any gluten contamination level is below 20ppm. Oats are, however, generally not gluten-free when produced in a conventional production chain, because of regular contamination with wheat, barley or rye. Therefore, establishing a separate gluten-free oat production chain requires controlling all steps in the chain; the strict conditions will be discussed. Genomic tools, including a single nucleotide polymorphism (SNP) marker array and a dense genetic map, have recently been developed and will support marker-assisted breeding. In 2015, the Oat Global initiative emerged enabling a world-wide cooperation starting with a data sharing facility on genotypic, metabolic and phenotypic characteristics. Further, the EU project TRAFOON (Traditional Food Networks) facilitated the transfer of knowledge to small- and medium-sized enterprises (SMEs) to stimulate innovations in oat production, processing, products and marketing, among others with regard to gluten-free. Finally, with focus on counteracting market fragmentation of the global oat market and production chains, interactive innovation strategies between customers (consumers) and companies through co-creation are discussed.


Asunto(s)
Avena , Dieta/métodos , Dieta Sin Gluten/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...