Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(12)2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38140662

RESUMEN

The entry of SARS-CoV-2 into host cells is mediated by the interaction between the spike receptor-binding domain (RBD) and host angiotensin-converting enzyme 2 (ACE2). Certain human antibodies, which target the spike N-terminal domain (NTD) at a distant epitope from the host cell binding surface, have been found to augment ACE2 binding and enhance SARS-CoV-2 infection. Notably, these antibodies exert their effect independently of the antibody fragment crystallizable (Fc) region, distinguishing their mode of action from previously described antibody-dependent infection-enhancing (ADE) mechanisms. Building upon previous hypotheses and experimental evidence, we propose that these NTD-targeting infection-enhancing antibodies (NIEAs) achieve their effect through the crosslinking of neighboring spike proteins. In this study, we present refined structural models of NIEA fragment antigen-binding region (Fab)-NTD complexes, supported by molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry (HDX-MS). Furthermore, we provide direct evidence confirming the crosslinking of spike NTDs by NIEAs. Collectively, our findings advance our understanding of the molecular mechanisms underlying NIEAs and their impact on SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus , Unión Proteica , Anticuerpos Antivirales
2.
Sci Immunol ; 8(81): eadc9324, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37000855

RESUMEN

Celastrol, a bioactive molecule extracted from the Tripterygium wilfordii plant, has been shown to exhibit anti-inflammatory properties. However, its mechanism of action has not been fully elucidated. Here, we show that celastrol suppresses humoral immune responses and autoimmunity by disabling a protein complex consisting of copper metabolism MURR1 domain-containing (COMMD) 3 and COMMD8 (COMMD3/8 complex), a signaling adaptor for chemoattractant receptors. Having demonstrated the involvement of the COMMD3/8 complex in a mouse model of rheumatoid arthritis, we identified celastrol as a compound that covalently bound to and dissociated the COMMD3/8 complex. Celastrol inhibited B cell migration, reduced antibody responses, and blocked arthritis progression, recapitulating deficiency of the COMMD3/8 complex. These effects of celastrol were abolished in mice expressing a celastrol-resistant mutant of the COMMD3/8 complex. These findings establish that celastrol exerts immunosuppressive activity by targeting the COMMD3/8 complex. Our study suggests that the COMMD3/8 complex is a potentially druggable target in autoimmune diseases and points to celastrol as a lead pharmacologic candidate in this capacity.


Asunto(s)
Enfermedades Autoinmunes , Inmunidad Humoral , Ratones , Animales , Autoinmunidad , Triterpenos Pentacíclicos
3.
Front Microbiol ; 11: 2112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042039

RESUMEN

The SARS-CoV-2 S protein is a major point of interaction between the virus and the human immune system. As a consequence, the S protein is not a static target but undergoes rapid molecular evolution. In order to more fully understand the selection pressure during evolution, we examined residue positions in the S protein that vary greatly across closely related viruses but are conserved in the subset of viruses that infect humans. These "evolutionarily important" residues were not distributed evenly across the S protein but were concentrated in two domains: the N-terminal domain and the receptor-binding domain, both of which play a role in host cell binding in a number of related viruses. In addition to being localized in these two domains, evolutionary importance correlated with structural flexibility and inversely correlated with distance from known or predicted host receptor-binding residues. Finally, we observed a bias in the composition of the amino acids that make up such residues toward more human-like, rather than virus-like, sequence motifs.

4.
Comput Struct Biotechnol J ; 18: 2000-2011, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802272

RESUMEN

B cell receptors (BCRs) and T cell receptors (TCRs) make up an essential network of defense molecules that, collectively, can distinguish self from non-self and facilitate destruction of antigen-bearing cells such as pathogens or tumors. The analysis of BCR and TCR repertoires plays an important role in both basic immunology as well as in biotechnology. Because the repertoires are highly diverse, specialized software methods are needed to extract meaningful information from BCR and TCR sequence data. Here, we review recent developments in bioinformatics tools for analysis of BCR and TCR repertoires, with an emphasis on those that incorporate structural features. After describing the recent sequencing technologies for immune receptor repertoires, we survey structural modeling methods for BCR and TCRs, along with methods for clustering such models. We review downstream analyses, including BCR and TCR epitope prediction, antibody-antigen docking and TCR-peptide-MHC Modeling. We also briefly discuss molecular dynamics in this context.

5.
Methods Mol Biol ; 2048: 207-229, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396940

RESUMEN

Structural modeling plays a key role in protein function prediction on a genome-wide scale. For B and T lymphocyte receptors, the critical functional question is: which antigens and epitopes are targeted? With emerging B cell receptor (BCR) and T cell receptor (TCR) sequencing methods improving in both breadth and depth, there is a growing need for methods that can help answer this question. Since lymphocyte-antigen recognition depends on complementarity, structural modeling is likely to play an important role in understanding antigen specificity and affinity. In the case of BCRs, such modeling methods have a long history in the study and design of antibodies. However, for TCRs there are relatively few publicly available modeling tools, and, to our knowledge, none that incorporate interaction between TCRs and peptide-MHC (pMHC) complexes. Here, we provide a web-based tool, ImmuneScape ( https://sysimm.org/immune-scape/ ), to carry out TCR-pMHC modeling as a first step toward structure-based function prediction.


Asunto(s)
Antígenos HLA/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Alelos , Mapeo Epitopo/métodos , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Antígenos HLA/genética , Antígenos HLA/inmunología , Humanos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Alineación de Secuencia , Programas Informáticos , Relación Estructura-Actividad , Linfocitos T/inmunología
7.
Biophys J ; 113(12): 2669-2681, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29262360

RESUMEN

The thylakoid membrane has a unique lipid composition, consisting mostly of galactolipids. These thylakoid lipids have important roles in photosynthesis. Here, we investigate to what extent these lipids bind specifically to the Photosystem II complex. To this end, we performed coarse-grain MD simulations of the Photosystem II complex embedded in a thylakoid membrane with realistic composition. Based on >85 µs simulation time, we find that monogalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol lipids are enriched in the annular shell around the protein, and form distinct binding sites. From the analysis of residue contacts, we conclude that electrostatic interactions play an important role in stabilizing these binding sites. Furthermore, we find that chlorophyll a has a prevalent role in the coordination of the lipids. In addition, we observe lipids to diffuse in and out of the plastoquinone exchange cavities, allowing exchange of cocrystallized lipids with the bulk membrane and suggesting a more open nature of the plastoquinone exchange cavity. Together, our data provide a wealth of information on protein-lipid interactions for a key protein in photosynthesis.


Asunto(s)
Lípidos de la Membrana/metabolismo , Simulación de Dinámica Molecular , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo , Sitios de Unión , Glicerol/metabolismo , Complejo de Proteína del Fotosistema II/química , Unión Proteica , Conformación Proteica
8.
Biophys J ; 112(9): 1929-1939, 2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28494963

RESUMEN

Cells are highly crowded with proteins and polynucleotides. Any reaction that depends on the available volume can be affected by macromolecular crowding, but the effects of crowding in cells are complex and difficult to track. Here, we present a set of Förster resonance energy transfer (FRET)-based crowding-sensitive probes and investigate the role of the linker design. We investigate the sensors in vitro and in vivo and by molecular dynamics simulations. We find that in vitro all the probes can be compressed by crowding, with a magnitude that increases with the probe size, the crowder concentration, and the crowder size. We capture the role of the linker in a heuristic scaling model, and we find that compression is a function of size of the probe and volume fraction of the crowder. The FRET changes observed in Escherichia coli are more complicated, where FRET-increases and scaling behavior are observed solely with probes that contain the helices in the linker. The probe with the highest sensitivity to crowding in vivo yields the same macromolecular volume fractions as previously obtained from cell dry weight. The collection of new probes provides more detailed readouts on the macromolecular crowding than a single sensor.


Asunto(s)
Sustancias Macromoleculares/metabolismo , Imagen Molecular , Sondas Moleculares , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Fluorometría , Microscopía Confocal , Microscopía Fluorescente , Simulación de Dinámica Molecular , Sondas Moleculares/química , Sondas Moleculares/genética
9.
Nat Commun ; 8: 15214, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28489071

RESUMEN

Plastoquinone (PLQ) acts as an electron carrier between photosystem II (PSII) and the cytochrome b6f complex. To understand how PLQ enters and leaves PSII, here we show results of coarse grained molecular dynamics simulations of PSII embedded in the thylakoid membrane, covering a total simulation time of more than 0.5 ms. The long time scale allows the observation of many spontaneous entries of PLQ into PSII, and the unbinding of plastoquinol (PLQol) from the complex. In addition to the two known channels, we observe a third channel for PLQ/PLQol diffusion between the thylakoid membrane and the PLQ binding sites. Our simulations point to a promiscuous diffusion mechanism in which all three channels function as entry and exit channels. The exchange cavity serves as a PLQ reservoir. Our simulations provide a direct view on the exchange of electron carriers, a key step of the photosynthesis machinery.


Asunto(s)
Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo , Tilacoides/metabolismo , Difusión , Transporte de Electrón , Modelos Biológicos , Simulación de Dinámica Molecular , Oxidación-Reducción , Fotosíntesis , Factores de Tiempo
10.
J Phys Chem B ; 121(15): 3237-3249, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27624992

RESUMEN

Photosystem II (PSII) is one of the key protein complexes in photosynthesis. We introduce a coarse grained model of PSII and present the analysis of 60 µs molecular dynamics simulations of PSII in both monomeric and dimeric form, embedded in a thylakoid membrane model that reflects its native lipid composition. We describe in detail the setup of the protein complex and the many natural cofactors and characterize their mobility. Overall we find that the protein subunits and cofactors are more flexible toward the periphery of the complex as well as near the PLQ exchange cavity and at the dimer interface. Of all cofactors, ß-carotenes show the highest mobility. Some of the ß-carotenes diffuse in and out of the protein complex via the thylakoid membrane. In contrast with the PSII dimer, the monomeric form adopts a tilted conformation in the membrane, with strong interactions between the soluble PsbO subunit and the glycolipid headgroups. Interestingly, the tilted conformation causes buckling of the membrane. Together, our results provide an unprecedented view of PSII dynamics on a microsecond time scale. Our data may be used as basis for the interpretation of experimental data as well as for theoretical models describing exciton energy transfer.


Asunto(s)
Simulación de Dinámica Molecular , Complejo de Proteína del Fotosistema II/química , Tilacoides/química , Transferencia de Energía , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo
11.
Biochim Biophys Acta ; 1848(6): 1319-30, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25749153

RESUMEN

The thylakoid membrane is mainly composed of non-common lipids, so called galactolipids. Despite the importance of these lipids for the function of the photosynthetic reaction centers, the molecular organization of these membranes is largely unexplored. Here we use multiscale molecular dynamics simulations to characterize the thylakoid membrane of both cyanobacteria and higher plants. We consider mixtures of up to five different galactolipids plus phosphatidylglycerol to represent these complex membranes. We find that the different lipids generally mix well, although nanoscale heterogeneities are observed especially in case of the plant membrane. The fluidity of the cyanobacterial membrane is markedly reduced compared to the plant membrane, even considering elevated temperatures at which thermophilic cyanobacteria are found. We also find that the plant membrane more readily undergoes a phase transformation to an inverted hexagonal phase. We furthermore characterized the conformation and dynamics of the cofactors plastoquinone and plastoquinol, revealing of the fast flip-flop rates for the non-reduced form. Together, our results provide a molecular view on the dynamical organization of the thylakoid membrane.


Asunto(s)
Cianobacterias/metabolismo , Membranas Intracelulares/metabolismo , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular , Spinacia oleracea/metabolismo , Tilacoides/metabolismo , Difusión , Cinética , Lípidos/química , Conformación Molecular , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo , Electricidad Estática
12.
J Am Chem Soc ; 136(41): 14554-9, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25229711

RESUMEN

The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different lipid species, combining 14 types of headgroups and 11 types of tails asymmetrically distributed across the two leaflets, closely mimicking an idealized mammalian plasma membrane. We observe an enrichment of cholesterol in the outer leaflet and a general non-ideal lateral mixing of the different lipid species. Transient domains with liquid-ordered character form and disappear on the microsecond time scale. These domains are coupled across the two membrane leaflets. In the outer leaflet, distinct nanodomains consisting of gangliosides are observed. Phosphoinositides show preferential clustering in the inner leaflet. Our data provide a key view on the lateral organization of lipids in one of life's fundamental structures, the cell membrane.


Asunto(s)
Membrana Celular/química , Lípidos/química , Simulación de Dinámica Molecular
13.
J Chem Theory Comput ; 9(3): 1694-708, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-26587629

RESUMEN

We present an extension of the Martini coarse-grained force field to glycolipids. The glycolipids considered here are the glycoglycerolipids monogalactosyldiacylglycerol (MGDG), sulfoquinovosyldiacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG), and phosphatidylinositol (PI) and its phosphorylated forms (PIP, PIP2), as well as the glycosphingolipids galactosylceramide (GCER) and monosialotetrahexosylganglioside (GM1). The parametrization follows the same philosophy as was used previously for lipids, proteins, and carbohydrates focusing on the reproduction of partitioning free energies of small compounds between polar and nonpolar solvents. Bonded parameters are optimized by comparison to lipid conformations sampled with an atomistic force field, in particular with respect to the representation of the most populated states around the glycosidic linkage. Simulations of coarse-grained glycolipid model membranes show good agreement with atomistic simulations as well as experimental data available, especially concerning structural properties such as electron densities, area per lipid, and membrane thickness. Our coarse-grained model opens the way to large scale simulations of biological processes in which glycolipids are important, including recognition, sorting, and clustering of both external and membrane bound proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...