Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37514607

RESUMEN

Instantaneous heart rate (IHR) has been investigated for sleep applications, such as sleep apnea detection and sleep staging. To ensure the comfort of the patient during sleep, it is desirable for IHR to be measured in a contact-free fashion. In this work, we use speckle vibrometry (SV) to perform on-skin and on-textile IHR monitoring in a sleep setting. Minute motions on the laser-illuminated surface can be captured by a defocused camera, enabling the detection of cardiac motions even on textiles. We investigate supine, lateral, and prone sleeping positions. Based on Bland-Altman analysis between SV cardiac measurements and electrocardiogram (ECG), with respect to each position, we achieve the best limits of agreement with ECG values of [-8.65, 7.79] bpm, [-9.79, 9.25] bpm, and [-10.81, 10.23] bpm, respectively. The results indicate the potential of using speckle vibrometry as a contact-free monitoring method for instantaneous heart rate in a setting where the participant is allowed to rest in a spontaneous position while covered by textile layers.


Asunto(s)
Electrocardiografía , Determinación de la Frecuencia Cardíaca , Humanos , Monitoreo Fisiológico , Frecuencia Cardíaca/fisiología , Electrocardiografía/métodos , Sueño/fisiología
2.
Bioengineering (Basel) ; 10(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36671681

RESUMEN

Polysomnography (PSG) remains the gold standard for sleep monitoring but is obtrusive in nature. Advances in camera sensor technology and data analysis techniques enable contactless monitoring of heart rate variability (HRV). In turn, this may allow remote assessment of sleep stages, as different HRV metrics indirectly reflect the expression of sleep stages. We evaluated a camera-based remote photoplethysmography (PPG) setup to perform automated classification of sleep stages in near darkness. Based on the contactless measurement of pulse rate variability, we use a previously developed HRV-based algorithm for 3 and 4-class sleep stage classification. Performance was evaluated on data of 46 healthy participants obtained from simultaneous overnight recording of PSG and camera-based remote PPG. To validate the results and for benchmarking purposes, the same algorithm was used to classify sleep stages based on the corresponding ECG data. Compared to manually scored PSG, the remote PPG-based algorithm achieved moderate agreement on both 3 class (Wake-N1/N2/N3-REM) and 4 class (Wake-N1/N2-N3-REM) classification, with average κ of 0.58 and 0.49 and accuracy of 81% and 68%, respectively. This is in range with other performance metrics reported on sensing technologies for wearable sleep staging, showing the potential of video-based non-contact sleep staging.

3.
J Surg Res ; 283: 705-712, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36462380

RESUMEN

INTRODUCTION: Anastomotic leakage after gastrointestinal surgery has a high impact on patient's quality of life and its origin is associated with inadequate perfusion. Imaging photoplethysmography (iPPG) is a noninvasive imaging technique that measures blood-volume changes in the microvascular tissue bed and detects changes in tissue perfusion. MATERIALS AND METHODS: Intraoperative iPPG imaging was performed in 29 patients undergoing an open segment resection of the small intestine or colon. During each surgery, imaging was performed on fully perfused (true positives) and ischemic intestines (true negatives) and the anastomosis (unknowns). Imaging consisted of a 30-s video from which perfusion maps were extracted, providing detailed information about blood flow within the intestine microvasculature. To detect the predictive capabilities of iPPG, true positive and true negative perfusion conditions were used to develop two different perfusion classification methods. RESULTS: iPPG-derived perfusion parameters were highly correlated with perfusion-perfused or ischemic-in intestinal tissues. A perfusion confidence map distinguished perfused and ischemic intestinal tissues with 96% sensitivity and 86% specificity. Anastomosis images were scored as adequately perfused in 86% of cases and 14% inconclusive. The cubic-Support Vector Machine achieved 90.9% accuracy and an area under the curve of 96%. No anastomosis-related postoperative complications were encountered in this study. CONCLUSIONS: This study shows that noninvasive intraoperative iPPG is suitable for the objective assessment of small intestine and colon anastomotic perfusion. In addition, two perfusion classification methods were developed, providing the first step in an intestinal perfusion prediction model.


Asunto(s)
Procedimientos Quirúrgicos del Sistema Digestivo , Fotopletismografía , Humanos , Fotopletismografía/efectos adversos , Calidad de Vida , Anastomosis Quirúrgica/efectos adversos , Procedimientos Quirúrgicos del Sistema Digestivo/efectos adversos , Fuga Anastomótica/etiología , Perfusión/efectos adversos , Verde de Indocianina
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4604-4610, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086409

RESUMEN

Monitoring of heart rate in patients in the general ward is necessary to assess the clinical situation of the patient. Currently, this is done via spot-checks on pulse rate manually or on heart rate using Electrocardiogram (ECG) by nurses. More frequent measurements would allow early detection of adverse cardiac events. In this work, we investigate a contactless measurement setup combined with a signal processing pipeline, which is based on speckle vibrometry (SV), to perform contactless heart rate monitoring of human subjects in a supine position, mimicking a resting scenario in the general ward. Our results demonstrate the feasibility of extracting heart rate with SV through varying textile thicknesses (i.e., 8 mm, 32 mm and 64 mm), with an error smaller than 3 beats per minute on average compared to the ground-truth heart rate derived from ECG.


Asunto(s)
Electrocardiografía , Procesamiento de Señales Asistido por Computador , Electrocardiografía/métodos , Corazón , Frecuencia Cardíaca/fisiología , Humanos , Monitoreo Fisiológico/métodos
5.
J Imaging ; 8(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35448221

RESUMEN

Surgical excision is the golden standard for treatment of intestinal tumors. In this surgical procedure, inadequate perfusion of the anastomosis can lead to postoperative complications, such as anastomotic leakages. Imaging photoplethysmography (iPPG) can potentially provide objective and real-time feedback of the perfusion status of tissues. This feasibility study aims to evaluate an iPPG acquisition system during intestinal surgeries to detect the perfusion levels of the microvasculature tissue bed in different perfusion conditions. This feasibility study assesses three patients that underwent resection of a portion of the small intestine. Data was acquired from fully perfused, non-perfused and anastomosis parts of the intestine during different phases of the surgical procedure. Strategies for limiting motion and noise during acquisition were implemented. iPPG perfusion maps were successfully extracted from the intestine microvasculature, demonstrating that iPPG can be successfully used for detecting perturbations and perfusion changes in intestinal tissues during surgery. This study provides proof of concept for iPPG to detect changes in organ perfusion levels.

6.
Biomed Opt Express ; 13(12): 6791-6802, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36589571

RESUMEN

Camera-based blood oxygen saturation (SpO2) monitoring allows reliable measurements without touching the skin and is therefore very attractive when there is a risk of cross-infection, in case of fragile skin, and/or to improve the clinical workflow. Despite promising results, productization of the technology is hampered by the unavailability of adequate hardware, especially a camera, which can capture the optimal wavelengths for SpO2 measurements in the red near-infrared region. A regular color (RGB) camera is attractive because of its availability, but also poses several risks and challenges which affect the accuracy of the measurement. To mitigate the most important risks, we propose to add low-cost commercial off-the-shelf (COTS) components to the setup. We executed two studies with this setup: one at a hypoxia lab with SpO2 values in the range 70 - 100% with the purpose to determine the calibration model, and the other study on volunteers to investigate the accuracy for different spot-check scenarios. The proposed processing pipeline includes face tracking and a robust method to estimate the ratio of relative amplitudes of the photoplethysmographic waveforms. Results show that the error is smaller than 4 percent points for realistic screening scenarios where the subject is seated, either with or without head support and/or ambient light.

7.
Biomed Opt Express ; 12(5): 2813-2824, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34168904

RESUMEN

Camera-based pulse-oximetry enables contactless estimation of peripheral oxygen saturation (SpO2). Because of the lack of readily available and affordable single-optics multi-spectral cameras, custom-made multi-camera setups with different optical filters are currently mostly used. The introduced parallax by these cameras could however jeopardise the SpO2 algorithm assumptions, especially during subject movement. In this paper we investigate the effect of parallax quantitatively by creating a large dataset consisting of 150 videos with three different parallax settings and with realistic and challenging motion scenarios. We estimate oxygen saturation values with a previously used global frame registration method and with a newly proposed adaptive local registration method to further reduce the parallax-induced image misalignment. We found that the amount of parallax has an important effect on the accuracy of the SpO2 measurement during movement and that the proposed local image registration reduces the error by more than a factor of 2 for the most common motion scenarios during screening. Extrapolation of the results suggests that the error during the most challenging motion scenario can be reduced to approximately 2 percent when using a parallax-free single-optics camera. This study provides important insights on the possible applications and use cases of remote pulse-oximetry with current affordable and readily available cameras.

8.
IEEE J Biomed Health Inform ; 25(5): 1409-1418, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33338025

RESUMEN

Polysomnography (PSG) is the current gold standard for the diagnosis of sleep disorders. However, this multi-parametric sleep monitoring tool also has some drawbacks, e.g. it limits the patient's mobility during the night and it requires the patient to come to a specialized sleep clinic or hospital to attach the sensors. Unobtrusive techniques for the detection of sleep disorders such as sleep apnea are therefore gaining increasing interest. Remote photoplethysmography using video is a technique which enables contactless detection of hemodynamic information. Promising results in near-infrared have been reported for the monitoring of sleep-relevant physiological parameters pulse rate, respiration and blood oxygen saturation. In this study we validate a contactless monitoring system on eight patients with a high likelihood of relevant obstructive sleep apnea, which are enrolled for a sleep study at a specialized sleep center. The dataset includes 46.5 hours of video recordings, full polysomnography and metadata. The camera can detect pulse and respiratory rate within 2 beats/breaths per minute accuracy 92% and 91% of the time, respectively. Estimated blood oxygen values are within 4 percentage points of the finger-oximeter 89% of the time. These results demonstrate the potential of a camera as a convenient diagnostic tool for sleep apnea, and sleep disorders in general.


Asunto(s)
Oximetría , Polisomnografía , Sueño , Humanos , Prueba de Estudio Conceptual , Frecuencia Respiratoria , Signos Vitales
9.
Biomed Opt Express ; 9(1): 102-119, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29359090

RESUMEN

Camera-based pulse-oximetry has recently shown to be feasible, even when the signal is corrupted by noise and motion artifacts. Earlier work showed that using three instead of the common two wavelengths improves robustness of the measurement, however without a thorough investigation on the optimal wavelength selection. We therefore performed a search to identify these wavelengths to further improve the robustness of the measurement. Besides motion, it is empirically known that there are several other factors that influence the measurement leading to falsely-low or falsely-high SpO2 readings. These factors include the presence of dyshemoglobins or other species. In this paper, we use a theoretical skin-model to study how these factors influence the measurement, and how a proper wavelength selection can reduce the impact on the measurement. Additionally, we show that adding a third wavelength does not only improve robustness, but can also be exploited to create a reliability index for the measurement. Finally, we show that the presence of dyshemoglobins in arterial blood can not only be detected but also quantified. We illustrate this by comparing the estimated COHb levels of a small group of smokers and non-smokers, which typically have different CO-levels.

10.
Biomed Opt Express ; 7(12): 4941-4957, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28018717

RESUMEN

Continuous monitoring of respiration is essential for early detection of critical illness. Current methods require sensors attached to the body and/or are not robust to subject motion. Alternative camera-based solutions have been presented using motion vectors and remote photoplethysmography. In this work, we present a non-contact camera-based method to detect respiration, which can operate in both visible and dark lighting conditions by detecting the respiratory-induced colour differences of the skin. We make use of the close similarity between skin colour variations caused by the beating of the heart and those caused by respiration, leading to a much improved signal quality compared to single-channel approaches. Essentially, we propose to find the linear combination of colour channels which suppresses the distortions best in a frequency band including pulse rate, and subsequently we use this same linear combination to extract the respiratory signal in a lower frequency band. Evaluation results obtained from recordings on healthy subjects which perform challenging scenarios, including motion, show that respiration can be accurately detected over the entire range of respiratory frequencies, with a correlation coefficient of 0.96 in visible light and 0.98 in infrared, compared to 0.86 with the best-performing non-contact benchmark algorithm. Furthermore, evaluation on a set of videos recorded in a Neonatal Intensive Care Unit (NICU) shows that this technique looks promising as a future alternative to current contact-sensors showing a correlation coefficient of 0.87.

11.
Sci Rep ; 6: 38609, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27924930

RESUMEN

Finger-oximeters are ubiquitously used for patient monitoring in hospitals worldwide. Recently, remote measurement of arterial blood oxygenation (SpO2) with a camera has been demonstrated. Both contact and remote measurements, however, require the subject to remain static for accurate SpO2 values. This is due to the use of the common ratio-of-ratios measurement principle that measures the relative pulsatility at different wavelengths. Since the amplitudes are small, they are easily corrupted by motion-induced variations. We introduce a new principle that allows accurate remote measurements even during significant subject motion. We demonstrate the main advantage of the principle, i.e. that the optimal signature remains the same even when the SNR of the PPG signal drops significantly due to motion or limited measurement area. The evaluation uses recordings with breath-holding events, which induce hypoxemia in healthy moving subjects. The events lead to clinically relevant SpO2 levels in the range 80-100%. The new principle is shown to greatly outperform current remote ratio-of-ratios based methods. The mean-absolute SpO2-error (MAE) is about 2 percentage-points during head movements, where the benchmark method shows a MAE of 24 percentage-points. Consequently, we claim ours to be the first method to reliably measure SpO2 remotely during significant subject motion.


Asunto(s)
Monitoreo Fisiológico , Oximetría/métodos , Telemedicina , Análisis de los Gases de la Sangre/métodos , Contencion de la Respiración , Humanos , Hipoxia/sangre , Hipoxia/diagnóstico , Monitoreo Fisiológico/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Telemedicina/métodos
12.
IEEE Trans Biomed Eng ; 62(5): 1425-33, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25585411

RESUMEN

Current state-of-the-art remote photoplethysmography (rPPG) algorithms are capable of extracting a clean pulse signal in ambient light conditions using a regular color camera, even when subjects move significantly. In this study, we investigate the feasibility of rPPG in the (near)-infrared spectrum, which broadens the scope of applications for rPPG. Two camera setups are investigated: one setup consisting of three monochrome cameras with different optical filters, and one setup consisting of a single RGB camera with a visible light blocking filter. Simulation results predict the monochrome setup to be more motion robust, but this simulation neglects parallax. To verify this, a challenging benchmark dataset consisting of 30 videos is created with various motion scenarios and skin tones. Experiments show that both camera setups are capable of accurate pulse extraction in all motion scenarios, with an average SNR of +6.45 and +7.26 dB, respectively. The single camera setup proves to be superior in scenarios involving scaling, likely due to parallax of the multicamera setup. To further improve motion robustness of the RGB camera, dedicated LED illumination with two distinct wavelengths is proposed and verified. This paper demonstrates that accurate rPPG measurements in infrared are feasible, even with severe subject motion.


Asunto(s)
Fotopletismografía/métodos , Tecnología de Sensores Remotos/métodos , Espectrofotometría Infrarroja/métodos , Adulto , Algoritmos , Femenino , Humanos , Masculino , Procesamiento de Señales Asistido por Computador , Piel/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...