Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Eur J Immunol ; 54(5): e2350873, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501878

RESUMEN

Resident memory T (TRM) cells have been recently established as an important subset of memory T cells that provide early and essential protection against reinfection in the absence of circulating memory T cells. Recent findings showing that TRM expand in vivo after repeated antigenic stimulation indicate that these memory T cells are not terminally differentiated. This suggests an opportunity for in vitro TRM expansion to apply in an immunotherapy setting. However, it has also been shown that TRM may not maintain their identity and form circulating memory T cells after in vivo restimulation. Therefore, we set out to determine how TRM respond to antigenic activation in culture. Using Listeria monocytogenes and LCMV infection models, we found that TRM from the intraepithelial compartment of the small intestine expand in vitro after antigenic stimulation and subsequent resting in homeostatic cytokines. A large fraction of the expanded TRM retained their phenotype, including the expression of key TRM markers CD69 and CD103 (ITGAE). The optimal culture of TRM required low O2 pressure to maintain the expression of these and other TRM-associated molecules. Expanded TRM retained their effector capacity to produce cytokines after restimulation, but did not acquire a highly glycolytic profile indicative of effector T cells. The proteomic analysis confirmed TRM profile retention, including expression of TRM-related transcription factors, tissue retention factors, adhesion molecules, and enzymes involved in fatty acid metabolism. Collectively, our data indicate that limiting oxygen conditions supports in vitro expansion of TRM cells that maintain their TRM phenotype, at least in part, suggesting an opportunity for therapeutic strategies that require in vitro expansion of TRM.


Asunto(s)
Memoria Inmunológica , Listeria monocytogenes , Células T de Memoria , Animales , Células T de Memoria/inmunología , Memoria Inmunológica/inmunología , Ratones , Listeria monocytogenes/inmunología , Antígenos CD/metabolismo , Antígenos CD/inmunología , Cadenas alfa de Integrinas/metabolismo , Ratones Endogámicos C57BL , Listeriosis/inmunología , Lectinas Tipo C/metabolismo , Lectinas Tipo C/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T/metabolismo , Citocinas/metabolismo , Citocinas/inmunología , Activación de Linfocitos/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Mucosa Intestinal/inmunología , Linfocitos T CD8-positivos/inmunología , Intestino Delgado/inmunología , Células Cultivadas
2.
Basic Clin Pharmacol Toxicol ; 133(4): 286-294, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36750420

RESUMEN

GPR56/ADGRG1 is an adhesion G protein-coupled receptor connected to brain development, haematopoiesis, male fertility, and tumorigenesis. Nevertheless, expression of GPR56 is not restricted to developmental processes. Studies over the last years have demonstrated a marked presence of GPR56 in human cytotoxic NK and T cells. Expression of GPR56 in these cells is driven by the transcription factor HOBIT, corresponds with the production of cytolytic mediators and the presence of CX3 CR1 and CD57, indicates a state of terminal differentiation and cellular exhaustion, and disappears upon cellular activation. Functional studies indicate that GPR56 regulates cell migration and effector functions and thereby acts as an inhibitory immune checkpoint. We here discuss the current state of knowledge regarding GPR56 in cytotoxic lymphocytes.


Asunto(s)
Antineoplásicos , Receptores Acoplados a Proteínas G , Humanos , Regulación de la Expresión Génica , Linfocitos , Receptores Acoplados a Proteínas G/metabolismo , Factores de Transcripción/metabolismo
3.
Eur J Immunol ; 53(3): e2250305, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36680414

RESUMEN

The magnitude of CD8 T-cell responses against intracellular pathogens is thought to primarily depend on the expansion capacity of naïve T cells, given that their recruitment is considered optimal. In the current issue of the European Journal of Immunology [Eur. J. Immunol. 2023. 53: 000-000], Leube et al. challenge these concepts and show that the recruitment of naïve T-cell clones into primary responses can be far from complete. The failure to efficiently recruit T-cell clones occurs more frequently in case of low-affinity interactions of the T-cell receptor with cognate antigen of the pathogen. Using single-cell fate-mapping in the Lm-OVA model, the authors demonstrate that naïve T-cell clones of low affinity in contrast to those of high affinity often do not expand after pathogen encounter. These low-affinity clones are maintained as naïve CD8 T cells that can robustly respond upon secondary encounter with the same pathogen, in particular when the reencountered pathogen contains modifications resulting in improved recognition. Thus, this study indicates that the regulation of the response size of CD8 T cells is yet more elaborate than anticipated and involves control at the level of recruitment and expansion of naïve CD8 T cells.


Asunto(s)
Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T , Células Clonales , Antígenos , Diferenciación Celular
4.
Eur J Immunol ; 53(2): e2249918, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36482267

RESUMEN

Memory CD8+ T cells are indispensable for maintaining long-term immunity against intracellular pathogens and tumors. Despite their presence at oxygen-deprived infected tissue sites or in tumors, the impact of local oxygen pressure on memory CD8+ T cells remains largely unclear. We sought to elucidate how oxygen pressure impacts memory CD8+ T cells arising after infection with Listeria monocytogenes-OVA. Our data revealed that reduced oxygen pressure during in vitro culture switched CD8+ T cell metabolism from oxidative phosphorylation to a glycolytic phenotype. Quantitative proteomic analysis showed that limiting oxygen conditions increased the expression of glucose transporters and components of the glycolytic pathway, while decreasing TCA cycle and mitochondrial respiratory chain proteins. The altered CD8+ T cell metabolism did not affect the expansion potential, but enhanced the granzyme B and IFN-γ production capacity. In vivo, memory CD8+ T cells cultured under low oxygen pressure provided protection against bacterial rechallenge. Taken together, our study indicates that strategies of cellular immune therapy may benefit from reducing oxygen during culture to develop memory CD8+ T cells with superior effector functions.


Asunto(s)
Listeria monocytogenes , Listeriosis , Neoplasias , Animales , Ratones , Linfocitos T CD8-positivos , Proteómica , Neoplasias/patología , Oxígeno/metabolismo , Glucólisis , Memoria Inmunológica , Ratones Endogámicos C57BL
5.
Eur J Immunol ; 53(2): e2149435, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36408791

RESUMEN

Type 1 Innate Lymphoid cells (ILC1s) are tissue-resident cells that partake in the regulation of inflammation and homeostasis. A major feature of ILC1s is their ability to rapidly respond after infections. The effector repertoire of ILC1s includes the pro-inflammatory cytokines IFN-γ and TNF-α and cytotoxic mediators such as granzymes, which enable ILC1s to establish immune responses and to directly kill target cells. Recent advances in the characterization of ILC1s have considerably furthered our understanding of ILC1 development and maintenance in tissues. In particular, it has become clear how ILC1s operate independently from conventional natural killer cells, with which they share many characteristics. In this review, we discuss recent developments with regards to the differentiation, polarization, and effector maturation of ILC1s. These processes may underlie the observed heterogeneity in ILC1 populations within and between different tissues. Next, we highlight transcriptional programs that control each of the separate steps in the differentiation of ILC1s. These transcriptional programs are shared with other tissue-resident type-1 lymphocytes, such as tissue-resident memory T cells (TRM ) and invariant natural killer T cells (iNKT), highlighting that ILC1s utilize networks of transcriptional regulation that are conserved between lymphocyte lineages to respond effectively to tissue-invading pathogens.


Asunto(s)
Inmunidad Innata , Linfocitos , Diferenciación Celular , Citocinas , Regulación de la Expresión Génica , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Células Asesinas Naturales , Linfocitos/inmunología
6.
Nat Commun ; 13(1): 3966, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803932

RESUMEN

Understanding the mechanisms and impact of booster vaccinations are essential in the design and delivery of vaccination programs. Here we show that a three dose regimen of a synthetic peptide vaccine elicits an accruing CD8+ T cell response against one SARS-CoV-2 Spike epitope. We see protection against lethal SARS-CoV-2 infection in the K18-hACE2 transgenic mouse model in the absence of neutralizing antibodies, but two dose approaches are insufficient to confer protection. The third vaccine dose of the single T cell epitope peptide results in superior generation of effector-memory T cells and tissue-resident memory T cells, and these tertiary vaccine-specific CD8+ T cells are characterized by enhanced polyfunctional cytokine production. Moreover, fate mapping shows that a substantial fraction of the tertiary CD8+ effector-memory T cells develop from re-migrated tissue-resident memory T cells. Thus, repeated booster vaccinations quantitatively and qualitatively improve the CD8+ T cell response leading to protection against otherwise lethal SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Epítopos de Linfocito T , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD8-positivos , COVID-19/prevención & control , Modelos Animales de Enfermedad , Memoria Inmunológica , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación , Vacunas Sintéticas
7.
Eur J Immunol ; 52(7): 1095-1111, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35389518

RESUMEN

Tissue-resident memory T cells (Trm) are retained in peripheral tissues after infection for enhanced protection against secondary encounter with the same pathogen. We have previously shown that the transcription factor Hobit and its homolog Blimp-1 drive Trm development after viral infection, but how and when these transcription factors mediate Trm formation remains poorly understood. In particular, the major impact of Blimp-1 in regulating several aspects of effector T-cell differentiation impairs study of its specific role in Trm development. Here, we used the restricted expression of Hobit in the Trm lineage to develop mice with a conditional deletion of Blimp-1 in Trm, allowing us to specifically investigate the role of both transcription factors in Trm differentiation. We found that Hobit and Blimp-1 were required for the upregulation of CD69 and suppression of CCR7 and S1PR1 on virus-specific Trm precursors after LCMV infection, underlining a role in their retention within tissues. The early impact of Hobit and Blimp-1 favored Trm formation and prevented the development of circulating memory T cells. Thus, our findings highlight a role of Hobit and Blimp-1 at the branching point of circulating and resident memory lineages by suppressing tissue egress of Trm precursors early during infection.


Asunto(s)
Linfocitos T CD8-positivos , Memoria Inmunológica , Coriomeningitis Linfocítica , Virus de la Coriomeningitis Linfocítica , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Factores de Transcripción , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Factor 1 de Unión al Dominio 1 de Regulación Positiva/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo
8.
Diabetes ; 71(4): 706-721, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044446

RESUMEN

Type 2 diabetes (T2D) causes an increased risk of morbidity and mortality in response to viral infection. T2D is characterized by hyperglycemia and is typically associated with insulin resistance and compensatory hyperinsulinemia. CD8 T cells express the insulin receptor, and previously, we have shown that insulin is able to directly modulate effector CD8 T-cell function. We therefore hypothesized that memory CD8 T-cell responsiveness in the context of T2D is negatively impacted by hyperinsulinemia or hyperglycemia. Using a mouse model for T2D, we could show that memory CD8 T-cell function was significantly reduced in response to rechallenge by viral infection or with melanoma cells. Basal insulin injection of mice increased GLUT-1 expression and glucose uptake in memory CD8 T-cell precursors early after infection, which was prevented when these cells were deficient for the insulin receptor. However, neither insulin injection nor insulin receptor deficiency resulted in a difference in metabolism, memory formation, cytokine production, or recall responses of memory CD8 T cells compared with controls. Importantly, in context of obesity, insulin receptor deficiency on CD8 T cells did not affect the functional capacity of memory CD8 T cells. In contrast, we could show in vitro and in vivo that hyperglycemia significantly impairs the antiviral capacity of memory CD8 T cells. Our findings indicate that obesity impairs the memory CD8 T-cell response against viral infection and cancer through the detrimental effects of hyperglycemia rather than hyperinsulinemia.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Hiperinsulinismo , Animales , Linfocitos T CD8-positivos/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Hiperglucemia/metabolismo , Hiperinsulinismo/metabolismo , Memoria Inmunológica , Insulina/farmacología , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Receptor de Insulina/metabolismo
10.
Nat Rev Nephrol ; 18(4): 209-223, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35079143

RESUMEN

Our understanding of T cell memory responses changed drastically with the discovery that specialized T cell memory populations reside within peripheral tissues at key pathogen entry sites. These tissue-resident memory T (TRM) cells can respond promptly to an infection without the need for migration, proliferation or differentiation. This rapid and local deployment of effector functions maximizes the ability of TRM cells to eliminate pathogens. TRM cells do not circulate through peripheral tissues but instead form isolated populations in the skin, gut, liver, kidneys, the reproductive tract and other organs. This long-term retention in the periphery might allow TRM cells to fully adapt to the local conditions of their environment and mount customized responses to counter infection and tumour growth in a tissue-specific manner. In the urogenital tract, TRM cells must adapt to a unique microenvironment to confer protection against potential threats, including cancer and infection, while preventing the onset of auto-inflammatory disease. In this Review, we discuss insights into the diversification of TRM cells from other memory T cell lineages, the adaptations of TRM cells to their local environment, and their enhanced capacity to counter infection and tumour growth compared with other memory T cell populations, especially in the urogenital tract.


Asunto(s)
Memoria Inmunológica , Células T de Memoria , Diferenciación Celular , Humanos , Piel
11.
Cells ; 10(10)2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34685654

RESUMEN

Tissue-resident memory T (TRM) cells with potent antiviral and antibacterial functions protect the epithelial and mucosal surfaces of our bodies against infection with pathogens. The strong proinflammatory activities of TRM cells suggest requirement for expression of inhibitory molecules to restrain these memory T cells under steady state conditions. We previously identified the adhesion G protein-coupled receptor GPR56 as an inhibitory receptor of human cytotoxic lymphocytes that regulates their cytotoxic effector functions. Here, we explored the expression pattern, expression regulation, and function of GPR56 on pathogen-specific CD8+ T cells using two infection models. We observed that GPR56 is expressed on TRM cells during acute infection and is upregulated by the TRM cell-inducing cytokine TGF-ß and the TRM cell-associated transcription factor Hobit. However, GPR56 appeared dispensable for CD8+ T-cell differentiation and function upon acute infection with LCMV as well as Listeria monocytogenes. Thus, TRM cells specifically acquire the inhibitory receptor GPR56, but the impact of this receptor on TRM cells after acute infection does not appear essential to regulate effector functions of TRM cells.


Asunto(s)
Diferenciación Celular/inmunología , Memoria Inmunológica , Receptores Acoplados a Proteínas G/metabolismo , Linfocitos T/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Citocinas/biosíntesis , Citotoxicidad Inmunológica , Regulación de la Expresión Génica , Listeria/fisiología , Virus de la Coriomeningitis Linfocítica/fisiología , Ratones , Receptores Acoplados a Proteínas G/genética , Regulación hacia Arriba
12.
Cells ; 10(9)2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34571883

RESUMEN

Tissue-resident memory T cells (TRM) comprise an important memory T cell subset that mediates local protection upon pathogen re-encounter. TRM populations preferentially localize at entry sites of pathogens, including epithelia of the skin, lungs and intestine, but have also been observed in secondary lymphoid tissue, brain, liver and kidney. More recently, memory T cells characterized as TRM have also been identified in tumors, including but not limited to melanoma, lung carcinoma, cervical carcinoma, gastric carcinoma and ovarian carcinoma. The presence of these memory T cells has been strongly associated with favorable clinical outcomes, which has generated an interest in targeting TRM cells to improve immunotherapy of cancer patients. Nevertheless, intratumoral TRM have also been found to express checkpoint inhibitory receptors, such as PD-1 and LAG-3. Triggering of such inhibitory receptors could induce dysfunction, often referred to as exhaustion, which may limit the effectiveness of TRM in countering tumor growth. A better understanding of the differentiation and function of TRM in tumor settings is crucial to deploy these memory T cells in future treatment options of cancer patients. The purpose of this review is to provide the current status of an important cancer immunotherapy known as TIL therapy, insight into the role of TRM in the context of antitumor immunity, and the challenges and opportunities to exploit these cells for TIL therapy to ultimately improve cancer treatment.


Asunto(s)
Memoria Inmunológica/inmunología , Inmunoterapia Adoptiva , Neoplasias/terapia , Subgrupos de Linfocitos T/inmunología , Antígenos CD/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/patología , Receptor de Muerte Celular Programada 1/metabolismo , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/metabolismo , Microambiente Tumoral , Proteína del Gen 3 de Activación de Linfocitos
13.
Nat Immunol ; 22(10): 1256-1267, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34462601

RESUMEN

Innate lymphoid cells (ILCs) participate in tissue homeostasis, inflammation, and early immunity against infection. It is unclear how ILCs acquire effector function and whether these mechanisms differ between organs. Through multiplexed single-cell mRNA sequencing, we identified cKit+CD127hiTCF-1hi early differentiation stages of T-bet+ ILC1s. These cells were present across different organs and had the potential to mature toward CD127intTCF-1int and CD127-TCF-1- ILC1s. Paralleling a gradual loss of TCF-1, differentiating ILC1s forfeited their expansion potential while increasing expression of effector molecules, reminiscent of T cell differentiation in secondary lymphoid organs. The transcription factor Hobit was induced in TCF-1hi ILC1s and was required for their effector differentiation. These findings reveal sequential mechanisms of ILC1 lineage commitment and effector differentiation that are conserved across tissues. Our analyses suggest that ILC1s emerge as TCF-1hi cells in the periphery and acquire a spectrum of organ-specific effector phenotypes through a uniform Hobit-dependent differentiation pathway driven by local cues.


Asunto(s)
Diferenciación Celular/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , Factores de Transcripción/inmunología , Animales , Femenino , Inflamación/inmunología , Células Asesinas Naturales/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/inmunología , Linfocitos T/inmunología
14.
Sci Immunol ; 6(62)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417257

RESUMEN

Tissue-resident memory CD8+ T cells (TRM) constitute a noncirculating memory T cell subset that provides early protection against reinfection. However, how TRM arise from antigen-triggered T cells has remained unclear. Exploiting the TRM-restricted expression of Hobit, we used TRM reporter/deleter mice to study TRM differentiation. We found that Hobit was up-regulated in a subset of LCMV-specific CD8+ T cells located within peripheral tissues during the effector phase of the immune response. These Hobit+ effector T cells were identified as TRM precursors, given that their depletion substantially decreased TRM development but not the formation of circulating memory T cells. Adoptive transfer experiments of Hobit+ effector T cells corroborated their biased contribution to the TRM lineage. Transcriptional profiling of Hobit+ effector T cells underlined the early establishment of TRM properties including down-regulation of tissue exit receptors and up-regulation of TRM-associated molecules. We identified Eomes as a key factor instructing the early bifurcation of circulating and resident lineages. These findings establish that commitment of TRM occurs early in antigen-driven T cell differentiation and reveal the molecular mechanisms underlying this differentiation pathway.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células T de Memoria/inmunología , Proteínas de Dominio T Box/inmunología , Animales , Diferenciación Celular , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
15.
Eur J Immunol ; 51(6): 1310-1324, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33837521

RESUMEN

Immunological memory equips our immune system to respond faster and more effectively against reinfections. This acquired immunity was originally attributed to long-lived, memory T and B cells with body wide access to peripheral and secondary lymphoid tissues. In recent years, it has been realized that both innate and adaptive immunity to a large degree depends on resident immune cells that act locally in barrier tissues including tissue-resident memory T cells (Trm). Here, we will discuss the phenotype of these Trm in mice and humans, the tissues and niches that support them, and their function, plasticity, and transcriptional control. Their unique properties enable Trm to achieve long-lived immunological memory that can be deposited in nearly every organ in response to acute and persistent infection, and in response to cancer. However, Trm may also induce substantial immunopathology in allergic and autoimmune disease if their actions remain unchecked. Therefore, inhibitory and activating stimuli appear to balance the actions of Trm to ensure rapid proinflammatory responses upon infection and to prevent damage to host tissues under steady state conditions.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Hipersensibilidad/inmunología , Inflamación/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Plasticidad de la Célula , Humanos , Memoria Inmunológica , Ratones
16.
Eur J Immunol ; 51(1): 151-166, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32762051

RESUMEN

Tissue-resident memory CD8+ T cells (TRM ) localize to barrier tissues and mediate local protection against reinvading pathogens. Circulating central memory (TCM ) and effector memory CD8+ T cells (TEM ) also contribute to tissue recall responses, but their potential to form mucosal TRM remains unclear. Here, we employed adoptive transfer and lymphocytic choriomeningitis virus reinfection models to specifically assess secondary responses of TCM and TEM at mucosal sites. Donor TCM and TEM exhibited robust systemic recall responses, but only limited accumulation in the small intestine, consistent with reduced expression of tissue-homing and -retention molecules. Murine and human circulating memory T cells also exhibited limited CD103 upregulation following TGF-ß stimulation. Upon pathogen clearance, TCM and TEM readily gave rise to secondary TEM . TCM also formed secondary central memory in lymphoid tissues and TRM in internal tissues, for example, the liver. Both TCM and TEM failed to substantially contribute to resident mucosal memory in the small intestine, while activated intestinal TRM , but not liver TRM , efficiently reformed CD103+ TRM . Our findings demonstrate that circulating TCM and TEM are limited in generating mucosal TRM upon reinfection. This may pose important implications on cell therapy and vaccination strategies employing memory CD8+ T cells for protection at mucosal sites.


Asunto(s)
Antígenos CD/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunidad Mucosa , Memoria Inmunológica , Cadenas alfa de Integrinas/inmunología , Inmunidad Adaptativa , Traslado Adoptivo , Animales , Antígenos CD/metabolismo , Linfocitos T CD8-positivos/clasificación , Linfocitos T CD8-positivos/citología , Diferenciación Celular/inmunología , Femenino , Humanos , Cadenas alfa de Integrinas/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Intestino Delgado/citología , Intestino Delgado/inmunología , Activación de Linfocitos , Virus de la Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/citología , Membrana Mucosa/inmunología , Factor de Crecimiento Transformador beta/inmunología
17.
Artículo en Inglés | MEDLINE | ID: mdl-32839203

RESUMEN

Immunological memory, defined as the ability to respond in an enhanced manner upon secondary encounter with the same pathogen, can provide substantial protection against infectious disease. The improved protection is mediated in part by different populations of memory CD8 T cells that are retained after primary infection. Memory cells persist in the absence of pathogen-derived antigens and enable secondary CD8 T-cell responses with accelerated kinetics and of larger magnitude after reencounter with the same pathogen. At least three subsets of memory T cells have been defined that are referred to as central memory CD8 T cells (Tcm), effector memory CD8 T cells (Tem), and tissue-resident memory CD8 T cells (Trm). Tcm and Tem are circulating memory T cells that mediate bodywide immune surveillance in search of invading pathogens. In contrast, Trm permanently reside in peripheral barrier tissues, where they form a stationary defensive line of sentinels that alert the immune system upon pathogen reencounter. The characterization of these different subsets has been instrumental in our understanding of the strategies that memory T cells employ to counter invading pathogens. It is clear that memory T cells not only have a numerical advantage over naive T cells resulting in improved protection in secondary responses, but also acquire distinct sets of competencies that assist in pathogen clearance. Nevertheless, inherent challenges are associated with the allocation of memory T cells to a limited number of subsets. The classification of memory T cells into Tcm, Tem, and Trm may not take into account the full extent of the heterogeneity that is observed in the memory population. Therefore, in this review, we will revisit the current classification of memory subsets, elaborate on functional and migratory properties attributed to Tcm, Tem, and Trm, and discuss how potential heterogeneity within these populations arises and persists.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Memoria Inmunológica/fisiología , Subgrupos de Linfocitos T/fisiología , Animales , Linfocitos T CD8-positivos/clasificación , Diferenciación Celular , Humanos , Activación de Linfocitos , Subgrupos de Linfocitos T/clasificación
18.
Nat Immunol ; 21(9): 1070-1081, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32661361

RESUMEN

Tissue-resident memory CD8+ T cells (TRM cells) are crucial in protecting against reinvading pathogens, but the impact of reinfection on their tissue confinement and contribution to recall responses is unclear. We developed a unique lineage tracer mouse model exploiting the TRM-defining transcription factor homolog of Blimp-1 in T cells (Hobit) to fate map the TRM progeny in secondary responses. After reinfection, a sizeable fraction of secondary memory T cells in the circulation developed downstream of TRM cells. These tissue-experienced ex-TRM cells shared phenotypic properties with the effector memory T cell population but were transcriptionally and functionally distinct from other secondary effector memory T cell cells. Adoptive transfer experiments of TRM cells corroborated their potential to form circulating effector and memory cells during recall responses. Moreover, specific ablation of primary TRM cell populations substantially impaired the secondary T cell response, both locally and systemically. Thus, TRM cells retain developmental plasticity and shape both local and systemic T cell responses on reinfection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Traslado Adoptivo , Animales , Diferenciación Celular , Linaje de la Célula , Plasticidad de la Célula , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética
19.
Eur J Immunol ; 50(10): 1515-1524, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32390174

RESUMEN

Invariant natural killer T cells (iNKT) constitute up to 50% of liver lymphocytes and contribute to immunosurveillance as well as pathogenesis of the liver. Systemic activation of iNKT cells induces acute immune-mediated liver injury. However, how tissue damage events regulate iNKT cell function and homeostasis remains unclear. We found that specifically tissue-resident iNKT cells in liver and spleen express the tissue-damage receptor P2RX7 and the P2RX7-activating ectoenzyme ARTC2. P2RX7 expression restricted formation of iNKT cells in the liver suggesting that liver iNKT cells are actively restrained under homeostatic conditions. Deliberate activation of P2RX7 in vivo by exogenous NAD resulted in a nearly complete iNKT cell ablation in liver and spleen in a P2RX7-dependent manner. Tissue damage generated by acetaminophen-induced liver injury reduced the number of iNKT cells in the liver. The tissue-damage-induced iNKT cell depletion was driven by P2RX7 and localized to the site of injury, as iNKT cells in the spleen remained intact. The depleted liver iNKT cells reconstituted only slowly compared to other lymphocytes such as regulatory T cells. These findings suggest that tissue-damage-mediated depletion of iNKT cells acts as a feedback mechanism to limit iNKT cell-induced pathology resulting in the establishment of a tolerogenic environment.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Hígado/patología , Células T Asesinas Naturales/fisiología , Receptores Purinérgicos P2X7/metabolismo , Acetaminofén/administración & dosificación , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Tolerancia Inmunológica , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Purinérgicos P2X7/genética
20.
Nat Immunol ; 20(4): 514, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30846879

RESUMEN

In the version of this article initially published, a portion of the Acknowledgements section ("the Clinical Research Group CEDER of the German Research Council (DFG)") was incorrect. The correct statement is as follows: "...the Collaborative Research Center TRR241 of the German Research Council (DFG)...". The error has been corrected in the HTML and PDF version of the article.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...