Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(41): 15571-15579, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37796720

RESUMEN

Airborne measurements offer an effective way to quantify urban emissions of greenhouse gases (GHGs). However, it may be challenging due to the requirement of high measurement precision and sufficiently enhanced signals. We developed a new active AirCore system based on the previous unmanned aerial vehicle (UAV) version, which is capable of sampling atmospheric air for several hours aboard a lightweight aircraft for postflight simultaneous and continuous measurements of N2O, CH4, CO2, and CO. We performed 13 flights over the urban areas of Groningen, Utrecht, and Rotterdam and evaluated the aircraft-based AirCore measurements against in situ continuous CH4 measurements. One flight was selected for each of the three urban areas to quantify the emissions of N2O and CH4. Compared to the Dutch inventory, the estimated N2O emissions (364 ± 143 kg h-1) from the Rotterdam area are ∼3 times larger, whereas those for Groningen (95 ± 90 kg h-1) and Utrecht (32 ± 16 kg h-1) are not significantly different. The estimated CH4 emissions for all three urban areas (Groningen: 2534 ± 1774 kg CH4 hr-1, Utrecht: 1440 ± 628 kg CH4 hr-1, and Rotterdam: 2419 ± 922 kg CH4 hr-1) are not significantly different from the Dutch inventory. The innovative aircraft-based active AirCore sampling system provides a robust means of high-precision and continuous measurements of multiple gas species, which is useful for quantifying GHG emissions from urban areas.


Asunto(s)
Gases de Efecto Invernadero , Metano , Metano/análisis , Óxido Nitroso/análisis , Dióxido de Carbono/análisis , Gases de Efecto Invernadero/análisis , Aeronaves
2.
Sci Total Environ ; 831: 154898, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35364158

RESUMEN

Enteric fermentation and manure methane emissions from livestock are major anthropogenic greenhouse gas emissions. In general, direct measurements of farm-scale methane emissions are scarce due to the source complexity and the limitations of existing atmospheric sampling methods. Using an innovative UAV-based active AirCore system, we have performed accurate atmospheric measurements of CH4 mole fractions downwind of a dairy cow farm in the Netherlands on four individual days during the period from March 2017 to March 2019. The total CH4 emission rates from the farm were determined using the UAV-based mass balance approach to be 1.1-2.4 g/s. After subtracting estimated emission factors of manure onsite, we derived the enteric emission factors to be 0.20-0.51 kgCH4/AU/d (1 AU = 500 kg animal weight) of dairy cows. We show that the uncertainties of the estimates were dominated by the variabilities in the wind speed and the angle between the wind and the flight transect. Furthermore, nonsimultaneous sampling in the vertical direction of the plume is one of the main limiting factors to achieving accurate estimate of the CH4 emissions from the farm. In addition, a N2O tracer release experiment at the farm was performed when both a UAV and a mobile van were present to simultaneously sample the N2O tracer and the CH4 plumes from the farm, improving the source quantification with a correction factor of 1.04 and 1.22 for the inverse Gaussian approach and for the mass balance approach, respectively. The UAV-based active AirCore system is capable of providing useful estimates of CH4 emissions from dairy cow farms. The uncertainties of the estimates can be improved when combined with accurate measurements of local wind speed and direction or when combined with a tracer approach.


Asunto(s)
Gases de Efecto Invernadero , Metano , Animales , Bovinos , Granjas , Femenino , Estiércol , Metano/análisis , Leche/química , Dispositivos Aéreos No Tripulados
3.
Sci Rep ; 9(1): 20153, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882779

RESUMEN

Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr-1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr-1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr-1).

4.
Science ; 363(6432): 1193-1199, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30872519

RESUMEN

We quantify the oceanic sink for anthropogenic carbon dioxide (CO2) over the period 1994 to 2007 by using observations from the global repeat hydrography program and contrasting them to observations from the 1990s. Using a linear regression-based method, we find a global increase in the anthropogenic CO2 inventory of 34 ± 4 petagrams of carbon (Pg C) between 1994 and 2007. This is equivalent to an average uptake rate of 2.6 ± 0.3 Pg C year-1 and represents 31 ± 4% of the global anthropogenic CO2 emissions over this period. Although this global ocean sink estimate is consistent with the expectation of the ocean uptake having increased in proportion to the rise in atmospheric CO2, substantial regional differences in storage rate are found, likely owing to climate variability-driven changes in ocean circulation.

5.
PeerJ ; 6: e5966, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30533295

RESUMEN

Anthropogenic pressures threaten the health of coral reefs globally. Some of these pressures directly affect coral functioning, while others are indirect, for example by promoting the capacity of bioeroders to dissolve coral aragonite. To assess the coral reef status, it is necessary to validate community-scale measurements of metabolic and geochemical processes in the field, by determining fluxes from enclosed coral reef patches. Here, we investigate diurnal trends of carbonate chemistry, dissolved organic carbon, oxygen, and nutrients on a 20 m deep coral reef patch offshore from the island of Saba, Dutch Caribbean by means of tent incubations. The obtained trends are related to benthic carbon fluxes by quantifying net community calcification (NCC) and net community production (NCP). The relatively strong currents and swell-induced near-bottom surge at this location caused minor seawater exchange between the incubated reef and ambient water. Employing a compensating interpretive model, the exchange is used to our advantage as it maintains reasonably ventilated conditions, which conceivably prevents metabolic arrest during incubation periods of multiple hours. No diurnal trends in carbonate chemistry were detected and all net diurnal rates of production were strongly skewed towards respiration suggesting net heterotrophy in all incubations. The NCC inferred from our incubations ranges from -0.2 to 1.4 mmol CaCO3 m-2 h-1 (-0.2 to 1.2 kg CaCO3 m-2 year-1) and NCP varies from -9 to -21.7 mmol m-2 h-1 (net respiration). When comparing to the consensus-based ReefBudget approach, the estimated NCC rate for the incubated full planar area (0.36 kg CaCO3 m-2 year-1) was lower, but still within range of the different NCC inferred from our incubations. Field trials indicate that the tent-based incubation as presented here, coupled with an appropriate interpretive model, is an effective tool to investigate, in situ, the state of coral reef patches even when located in a relatively hydrodynamic environment.

6.
PLoS One ; 13(5): e0197824, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29847572

RESUMEN

Excavating sponges are among the most important macro-eroders of carbonate substrates in marine systems. Their capacity to remove substantial amounts of limestone makes these animals significant players that can unbalance the reef carbonate budget of tropical coral reefs. Nevertheless, excavating sponges are currently rarely incorporated in standardized surveys and experimental work is often restricted to a few species. Here were provide chemical and mechanical bioerosion rates for the six excavating sponge species most commonly found on the shallow reef of Curaçao (southern Caribbean): Cliona caribbaea, C. aprica, C. delitrix, C. amplicavata, Siphonodictyon brevitubulatum and Suberea flavolivescens. Chemical, mechanical and total bioerosion rates were estimated based on various experimental approaches applied to sponge infested limestone cores. Conventional standing incubation techniques were shown to strongly influence the chemical dissolution signal. Final rates, based on the change in alkalinity of the incubation water, declined significantly as a function of incubation time. This effect was mitigated by the use of a flow-through incubation system. Additionally, we found that mechanically removed carbonate fragments collected in the flow-through chamber (1 h) as well as a long-term collection method (1 wk) generally yielded comparable estimates for the capacity of these sponges to mechanically remove substratum. Observed interspecific variation could evidently be linked to the adopted boring strategy (i.e. gallery-forming, cavity-forming or network-working) and presence or absence of symbiotic zooxanthellae. Notably, a clear diurnal pattern was found only in species that harbour a dense photosymbiotic community. In these species chemical erosion was substantially higher during the day. Overall, the sum of individually acquired chemical and mechanical erosion using flow-through incubations was comparable to rates obtained gravimetrically. Such consistency is a first in this field of research. These findings support the much needed confirmation that, depending on the scientific demand, the different approaches presented here can be implemented concurrently as standardized methods.


Asunto(s)
Arrecifes de Coral , Fenómenos Mecánicos , Poríferos/química , Animales , Curazao , Simbiosis
7.
Science ; 349(6253): 1221-4, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26359401

RESUMEN

Several studies have suggested that the carbon sink in the Southern Ocean-the ocean's strongest region for the uptake of anthropogenic CO2 -has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized.


Asunto(s)
Dióxido de Carbono/química , Secuestro de Carbono , Océanos y Mares , Agua de Mar/química , Regiones Antárticas , Atmósfera/química , Simulación por Computador , Redes Neurales de la Computación
8.
Philos Trans A Math Phys Eng Sci ; 372(2019): 20130056, 2014 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-24891391

RESUMEN

Data are presented for total carbon dioxide (TCO2), oxygen and nutrients from 14 cruises covering two repeat sections across the Weddell Gyre, from 1973 to 2010. Assessments of the rate of increase in anthropogenic CO2 (Cant) are made at three locations. Along the Prime Meridian, TCO2 is observed to steadily increase in the bottom water. Accompanying changes in silicate, nitrate and oxygen confirm the non-steady state of the Weddell circulation. The rate of increase in TCO2 of +0.12±0.05 µmol kg(-1) yr(-1) therefore poses an upper limit to the rate of increase in Cant. By contrast, the bottom water located in the central Weddell Sea exhibits no significant increase in TCO2, suggesting that this water is less well ventilated at the southern margins of the Weddell Sea. At the tip of the Antarctic Peninsula (i.e. the formation region of the bottom water found at the Prime Meridian), the high rate of increase in TCO2 over time observed at the lowest temperatures suggests that nearly full equilibration occurs with the anthropogenic CO2 of the atmosphere. This observation constitutes rare evidence for the possibility that ice cover is not a major impediment for uptake of Cant in this prominent deep water formation region.


Asunto(s)
Dióxido de Carbono/análisis , Fenómenos Geológicos , Océanos y Mares , Movimientos del Agua , Regiones Antárticas , Oceanografía , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...