Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Gen Virol ; 97(9): 2117-2128, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27311834

RESUMEN

Recombinant measles virus (rMV) vectors expressing heterologous viral membrane protein antigens are potentially useful as vaccines. Genes encoding the mumps virus haemagglutinin-neuraminidase (MuV-HN), the influenza virus haemagglutinin (Flu-HA) or the respiratory syncytial virus fusion (RSV-F) proteins were inserted into the genome of a live attenuated vaccine strain of measles virus. Additionally, in this case rMV with the MuV-HN or the influenza HA inserts, chimeric constructs were created that harboured the measles virus native haemagglutinin or fusion protein cytoplasmic domains. In all three cases, sucrose-gradient purified preparations of rMV were found to have incorporated the heterologous viral membrane protein on the viral membrane. The possible utility of rMV expressing RSV-F (rMV.RSV-F) as a vaccine was tested in a cotton rat challenge model. Vaccination with rMV.RSV-F efficiently induced neutralizing antibodies against RSV and protected animals from infection with RSV in the lungs.


Asunto(s)
Portadores de Fármacos , Vectores Genéticos , Virus del Sarampión/genética , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitiales Respiratorios/inmunología , Proteínas de la Matriz Viral/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Modelos Animales de Enfermedad , Pulmón/inmunología , Pulmón/virología , Conejos , Virus Sincitiales Respiratorios/genética , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas de la Matriz Viral/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
2.
PLoS Pathog ; 12(3): e1005483, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27032093

RESUMEN

The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive PER.C6 cell culture platform, the stably attenuated CAVA strains may serve as an attractive low-cost and (bio)safe option for the production of a novel next generation IPV.


Asunto(s)
Poliomielitis/inmunología , Vacuna Antipolio de Virus Inactivados/inmunología , Poliovirus/inmunología , Animales , Frío , Calor , Ratones Transgénicos , Mutación/genética , Fenotipo , Poliovirus/genética , Vacuna Antipolio Oral/inmunología , ARN Viral/inmunología , Ratas , Vacunación/métodos
3.
Vaccine ; 33(48): 6611-6, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26529068

RESUMEN

BACKGROUND: As poliovirus eradication draws closer, alternative Inactivated Poliovirus Vaccines (IPV) are needed to overcome the risks associated with continued use of the Oral Poliovirus Vaccine and of neurovirulent strains used during manufacture of conventional (c) IPV. We have previously demonstrated the susceptibility of the PER.C6(®) cell line to cIPV strains; here we investigated the suspension cell culture platform for growth of attenuated poliovirus strains. METHODS: We examined attenuated Sabin strain productivity on the PER.C6(®) cell platform compared to the conventional Vero cell platform. The suitability of the suspension cell platform for propagation of rationally-attenuated poliovirus strains (stabilized Sabin type 3 S19 derivatives and genetically attenuated and stabilized MonoCre(X) strains), was also assessed. Yields were quantified by infectious titer determination and D-antigen ELISA using either serotype-specific polyclonal rabbit sera for Sabin strains or monoclonal cIPV-strain-specific antibodies for cIPV, S19 and MonoCre(X) strains. RESULTS: PER.C6(®) cells supported the replication of Sabin strains to yields of infectious titers that were in the range of cIPV strains at 32.5°C. Sabin strains achieved 30-fold higher yields (p<0.0001) on the PER.C6(®) cell platform as compared to the Vero cell platform in infectious titer and D-antigen content. Furthermore, Sabin strain productivity on the PER.C6(®) cell platform was maintained at 10l scale. Yields of infectious titers of S19 and MonoCre(X) strains were 0.5-1 log10 lower than seen for cIPV strains, whereas D-antigen yield and productivities in doses/ml using rationally-attenuated strains were in line with yields reported for cIPV strains. CONCLUSIONS: Sabin and rationally-attenuated polioviruses can be grown to high infectious titers and D-antigen yields. Sabin strain infection shows increased productivity on the PER.C6(®) cell platform as compared to the conventional Vero cell platform. Novel cell platforms with the potential for higher yields could contribute to increased affordability of a next generation of IPV vaccines needed for achieving and maintaining poliovirus eradication.


Asunto(s)
Vacuna Antipolio de Virus Inactivados , Poliovirus/crecimiento & desarrollo , Cultivo de Virus/métodos , Animales , Anticuerpos Antivirales/sangre , Técnicas de Cultivo de Célula , Línea Celular , Chlorocebus aethiops , Medio de Cultivo Libre de Suero/química , Ensayo de Inmunoadsorción Enzimática , Poliomielitis/prevención & control , Poliovirus/genética , Vacuna Antipolio de Virus Inactivados/inmunología , Vacuna Antipolio Oral , Conejos , Vacunas Atenuadas , Células Vero , Carga Viral
4.
J Gen Virol ; 96(9): 2614-2622, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26018960

RESUMEN

Brunenders, a type I poliovirus (PV) strain, was developed in 1952 by J. F. Enders and colleagues through serial in vitro passaging of the parental Brunhilde strain, and was reported to display partial neuroattenuation in monkeys. This phenotype of attenuation encouraged two vaccine manufacturers to adopt Brunenders as the type I component for their inactivated poliovirus vaccines (IPVs) in the 1950s, although today no licensed IPV vaccine contains Brunenders. Here we confirmed, in a transgenic mouse model, the report of Enders on the reduced neurovirulence of Brunenders. Although dramatically neuroattenuated relative to WT PV strains, Brunenders remains more virulent than the attenuated oral vaccine strain, Sabin 1. Importantly, the neuroattenuation of Brunenders does not affect in vitro growth kinetics and in vitro antigenicity, which were similar to those of Mahoney, the conventional type I IPV vaccine strain. We showed, by full nucleotide sequencing, that Brunhilde and Brunenders differ at 31 nucleotides, eight of which lead to amino acid changes, all located in the capsid. Upon exchanging the Brunenders capsid sequence with that of the Mahoney capsid, WT neurovirulence was regained in vivo, suggesting a role for the capsid mutations in Brunenders attenuation. To date, as polio eradication draws closer, the switch to using attenuated strains for IPV is actively being pursued. Brunenders preceded this novel strategy as a partially attenuated IPV strain, accompanied by decades of successful use in the field. Providing data on the attenuation of Brunenders may be of value in the further construction of attenuated PV strains to support the grand pursuit of the global eradication of poliomyelitis.


Asunto(s)
Poliomielitis/prevención & control , Vacuna Antipolio Oral/inmunología , Poliovirus/inmunología , Secuencia de Aminoácidos , Animales , Historia del Siglo XX , Humanos , Ratones , Datos de Secuencia Molecular , Pruebas de Neutralización , Poliomielitis/historia , Poliomielitis/inmunología , Poliomielitis/virología , Poliovirus/genética , Poliovirus/crecimiento & desarrollo , Vacuna Antipolio Oral/química , Vacuna Antipolio Oral/genética , Vacuna Antipolio Oral/historia , Alineación de Secuencia , Vacunas Atenuadas/química , Vacunas Atenuadas/genética , Vacunas Atenuadas/historia , Vacunas Atenuadas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA