Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NMR Biomed ; 34(5): e4204, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31736167

RESUMEN

Currently, it is difficult to predict effective therapy response to molecular therapies for the treatment of lung cancer based solely on anatomical images. 31 P MR spectroscopic imaging could provide as a non-invasive method to monitor potential biomarkers for early therapy evaluation, a necessity to improve personalized care and reduce cost. However, surface coils limit the imaging volume in conventional 31 P MRSI. High-energetic adiabatic RF pulses are required to achieve flip angle homogeneity but lead to high SAR. Birdcage coils permit use of conventional amplitude modulated pulses, even over large FOV, potentially decreasing overall SAR massively. Here, we investigate the feasibility of 3D 31 P MRSI at 7 T in lung carcinoma patients using an integrated 31 P birdcage body coil in combination with either a dual-coil or a 16-channel receiver. Simulations showed a maximum decrease in SNR per unit of time of 8% for flip angle deviations in short TR low flip-angle excitation 3D CSI. The minimal SNR loss allowed for fast 3D CSI without time-consuming calibration steps (>10:00 min.). 31 P spectra from four lung carcinoma patients were acquired within 29:00 minutes and with high SNR using both receivers. The latter allowed discrimination of individual phosphodiesters, inorganic phosphate, phosphocreatine and ATP. The receiver array allowed for an increased FOV compared to the dual-coil receiver. 3D 31 P-CSI were acquired successfully in four lung carcinoma patients using the integrated 31 P body coil at ultra-high field. The increased spectral resolution at 7 T allowed differentiation of multiple 31 P metabolites related to phospholipid and energy metabolism. Simulations provide motivation to exclude 31 P B1 calibrations, potentially decreasing total scan duration. Employing large receiver arrays improves the field of view allowing for full organ coverage. 31 P MRSI is feasible in lung carcinoma patients and has potential as a non-invasive method for monitoring personalized therapy response in lung tumors.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Imagen por Resonancia Magnética , Simulación por Computador , Estudios de Factibilidad , Humanos , Pulmón/diagnóstico por imagen , Persona de Mediana Edad , Cuello/diagnóstico por imagen , Tomografía Computarizada por Rayos X
2.
Contrast Media Mol Imaging ; 2019: 2645928, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30956626

RESUMEN

In solid tumors, rapid local intravascular release of anticancer agents, e.g., doxorubicin (DOX), from thermosensitive liposomes (TSLs) can be an option to overcome poor extravasation of drug nanocarriers. The driving force of DOX penetration is the drug concentration gradient between the vascular compartment and the tumor interstitium. In this feasibility study, we used fibered confocal fluorescence microscopy (FCFM) to monitor in real-time DOX penetration in the interstitium of a subcutaneous tumor after its intravascular release from TSLs, Thermodox®. Cell uptake kinetics of the released DOX was quantified, along with an in-depth assessment of released-DOX penetration using an evolution model. A subcutaneous rat R1 rhabdomyosarcoma xenograft was used. The rodent was positioned in a setup including a water bath, and FCFM identification of functional vessels in the tumor tissue was applied based on AngioSense. The tumor-bearing leg was immersed in the 43°C water for preheating, and TSLs were injected intravenously. Real-time monitoring of intratumoral (i.t.) DOX penetration could be performed, and it showed the progressing DOX wave front via its native fluorescence, labeling successively all cell nuclei. Cell uptake rates (1/k) of 3 minutes were found (n=241 cells), and a released-DOX penetration in the range of 2500 µm2·s-1 was found in the tumor extravascular space. This study also showed that not all vessels, identified as functional based on AngioSense, gave rise to local DOX penetration.


Asunto(s)
Doxorrubicina/farmacocinética , Hipertermia Inducida , Liposomas/metabolismo , Animales , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Cinética , Microscopía Confocal , Ratas , Rabdomiosarcoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...