Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 101(8): 101973, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35759997

RESUMEN

Improving leg health will support broiler health and welfare. Known factors to improve leg health are: replacing inorganic by organic macro minerals in the diet, providing environmental enrichments and using slower-growing broilers. However, it remains unknown how fast- and slower-growing broilers respond to a combination of providing organic macro minerals and an elevated platform as enrichment with regard to leg health. Therefore, the aim of this study was to identify whether a combined treatment of organic macro minerals and a platform affected leg health, tibia characteristics, behavior and performance of fast- and slower-growing broilers in a semicommercial setting. The experiment had a 2 × 2 factorial arrangement, with 12.800 fast-growing (Ross 308) and 12.800 slower-growing (Hubbard JA757) broilers that were randomly allocated to a control (i.e., inorganic macro minerals without enrichment) or adapted treatment (i.e., organic macro minerals and a platform). Broilers were housed in groups of 800 per pen (47.5 m2), with 8 replicates per treatment (total of 32 pens). Performance was measured weekly and over the total rearing period. Behavior was observed via scan sampling at a target weight of 0.6 and 1.9 kg for both breeds. Walking ability (gait score), footpad dermatitis, and hock burn were assessed in 10 broilers per pen just prior to slaughter weight. Leg disorders and tibia characteristics were assessed in the same broilers at slaughter weight (2.3 kg). Hardly any interaction effects between breed and treatment were found on leg health, tibia characteristics, behavior or performance, suggesting fast- and slower-growing broilers responded to the treatment similarly. The adapted treatment improved tibia characteristics, and increased locomotion and performance, but did not affect leg disorders, walking ability or contact dermatitis in both fast- and slower-growing broilers. The positive effects of the adapted treatment on tibia characteristics in both fast- and slower-growing broilers may improve leg health, although the current study did not confirm this for leg disorders, walking ability or contact dermatitis.


Asunto(s)
Pollos , Dermatitis por Contacto , Animales , Dermatitis por Contacto/veterinaria , Minerales , Tibia , Caminata
2.
Animals (Basel) ; 12(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35565541

RESUMEN

An experiment was performed to study the effects of a low inclusion level of Chlorella vulgaris (CV) biomass in broiler diets on performance, immune response related to inflammatory status, and the intestinal histomorphology. The study was performed with 120 Ross 308 male broiler chickens from 0−35 days of age. The broilers were housed in 12 floor pens (1.5 m2) bedded with wood shavings. The broilers received a three phase diet program, either with 0.8% CV biomass (CV) or without CV (CON). Each diet program was replicated in six pens. The final body weight increased (p = 0.053), and the feed conversion ratio (FCR), corrected for body weight, was reduced (p = 0.02) in birds fed CV compared to birds fed CON. In addition, decreased haptoglobins (p = 0.02) and interleukin-13 (p < 0.01) responses were observed during the grower phase of birds fed CV compared to the birds fed CON. A strong correlation (r = 0.82, p < 0.01) was observed between haptoglobin response and FCR. Histomorphology parameters of the jejunum were not different between the groups. It was concluded that the inclusion of 0.8% CV biomass in broiler diets is effective in influencing immune responses related to inflammatory status and promoting broiler growth.

3.
Br J Nutr ; : 1-12, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35416139

RESUMEN

Sixty growing male pigs were used to test the hypothesis that high dietary Ca content reduces P absorption to a greater extent in microbial phytase-supplemented diets via reducing inositol phosphate (IP) degradation and enhancing P precipitation. Pigs were equally allotted over diets with three Ca contents 2·0, 5·8 and 9·6 g/kg with or without microbial phytase (0 v. 500 FTU/kg) in a 2 × 3 factorial arrangement. Faeces and urine were collected at the end of the 21-d experimental period. Subsequently, pigs were euthanised and digesta quantitatively collected from different gastrointestinal tract (GIT) segments. Increasing dietary Ca content reduced apparent P digestibility in all GIT segments posterior to the stomach (P < 0·001), with greater effect in phytase-supplemented diets in the distal small intestine (Pinteraction = 0·007) and total tract (Pinteraction = 0·023). Nonetheless, increasing dietary Ca to 5·8 g/kg enhanced P retention, but only in phytase-supplemented diets. Ileal IP6 degradation increased with phytase (P < 0·001) but decreased with increasing dietary Ca content (P = 0·014). Proportion of IP esters in total IP (∑IP) indicated that IP6/∑IP was increased while IP4/∑IP and IP3/∑IP were reduced with increasing dietary Ca content and also with a greater impact in phytase-supplemented diets (Pinteraction = 0·025, 0·018 and 0·009, respectively). In all GIT segments, P solubility was increased with phytase (P < 0·001) and tended to be reduced with dietary Ca content (P < 0·096). Measurements in GIT segments showed that increasing dietary Ca content reduced apparent P digestibility via reducing IP degradation and enhancing P precipitation, with a greater impact in phytase-supplemented diets due to reduced IP degradation.

4.
J Anim Physiol Anim Nutr (Berl) ; 104(6): 1819-1834, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32592266

RESUMEN

Appetite is the desire for feed and water and the voluntary intake of feed and is an important regulator of livestock productivity and animal health. Economic traits such as growth rate and muscle development (meat deposition) in broilers are directly correlated to appetite. Factors that may influence appetite include environmental factors, such as stress and temperature variation, and animal-specific factors, such as learning period, eating capacity and preferences. Feed preferences have been reported to be determined in early life, and this period is important in broilers due to their fast growth and relatively short growth trajectories. This may be of importance when contemplating the use of more circular and sustainable feeds and the optimization of appetite for these feeds. The objective of this review was to review the biological mechanisms underlying appetite using data from human, animal and bird models and to consider the option for modulating appetite particularly as it relates to broiler chickens.


Asunto(s)
Apetito , Pollos , Alimentación Animal/análisis , Animales , Carne/análisis , Desarrollo de Músculos , Temperatura
5.
Genes Nutr ; 14: 8, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30923583

RESUMEN

BACKGROUND: Micro algae's are worldwide considered as an alternative source of proteins in diets for animals and humans. Micro algae also produce an array of biological active substances with potential to induce beneficial and health promoting effects. To better understand the mode of action of micro algae's when applied as additive in diets, porcine intestinal epithelial cells (IPEC-J2), stressed by enterotoxigenic Escherichia coli (ETEC) or under non-stressed conditions, were exposed to micro algae extracts and changes in gene expression were recorded. METHODS: IPEC-J2 cells were exposed for 2 and 6 h to extracts prepared from the biomass of the microalgae Chlorella vulgaris (C), Haematococcus pluvialis (H), Spirulina platensis (S), or a mixture of Scenedesmus obliques and Chlorella sorokiniana (AM), in the absence and presence of ETEC. Gene expression in cells was measured using porcine "whole genome" microarrays. RESULTS: The micro algae extracts alone enhanced the expression of a set of genes coding for proteins with biological activity that are secreted from cells. These secreted proteins (hereafter denoted as effector proteins; EPs) may regulate processes like remodelling of the extracellular matrix, activation of an antiviral/bacterial response and oxygen homeostasis in the intestine and periphery. Elevated gene expression of immunostimulatory proteins CCL17, CXCL2, CXCL8 (alias IL8), IFNA, IFNL1, HMOX1, ITGB3, and THBS1 was observed in response to all four extracts in the absence or presence of ETEC. For several of these immunostimulatory proteins no elevated expression was observed when cells were exposed to ETEC alone. Furthermore, all extracts highly stimulated expression of an antisense RNA of the mitochondrial/peroxisome symporter SLC25A21 gene in ETEC-challenged cells. Inhibition of SLC25A21 translation by this antisense RNA may impose a concentration gradient of 2-oxoadipic and 2-oxoglutarate, both metabolites of fatty acid ß-oxidation, between the cytoplasm and the interior of these organelles. CONCLUSIONS: Exposure of by ETEC stressed intestinal epithelium cells to micro algae extracts affected "fatty acid ß-oxidation", ATP and reactive oxygen species production and (de) hydroxylation of lysine residues in procollagen chains in these cells. Elevated gene expression of specific EPs and immunostimulatory proteins indicated that micro algae extracts, when used as feed/food additive, can steer an array of metabolic and immunological processes in the intestines of humans and monogastric animals stressed by an enteric bacterial pathogen.

6.
Front Vet Sci ; 5: 107, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30177972

RESUMEN

Consumption of low protein energy-rich (LPER) diets increases susceptibility to metabolic disease in mammals, such as hepatic damage, and can have an adverse effect on cognition. However, the effects of these diets on both physical and mental welfare have not been investigated in domestic meat chickens. Female chicks received a low protein energy-rich or a standard control diet from 21 to 51 days of age. The effects of these dietary manipulations on plasma hepatic markers for liver damage, liver necropsy, and learning a visual discrimination reversal task were assessed. Birds given access to LPER diets weighed less than chicks that had access to the control diets. All chicks had post-mortem signs of hepatic hemorrhage/increased liver color scores and aspartate aminotransferase (AST) levels above 230 U/L indicative of hepatic damage in birds. The LPER diet had no impact on the performance of female chicks when learning to distinguish colors in a reversal visual discrimination task. The present study suggests that liver damage does not become worse when feeding LPER or impact visual reversal learning in female meat-type chickens. However, the high incidence of liver cell damage/liver hemorrhage, and "abnormal" AST activities are of concern in female broiler chicks across both diets, and suggests that the health of modern meat-type genotypes needs to be improved.

7.
Genes Nutr ; 12: 11, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28413565

RESUMEN

BACKGROUND: Gene expression profiles of intestinal mucosa of chickens and pigs fed over long-term periods (days/weeks) with a diet rich in rye and a diet supplemented with zinc, respectively, or of chickens after a one-day amoxicillin treatment of chickens, were recorded recently. Such dietary interventions are frequently used to modulate animal performance or therapeutically for monogastric livestock. In this study, changes in gene expression induced by these three interventions in cultured "Intestinal Porcine Epithelial Cells" (IPEC-J2) recorded after a short-term period of 2 and 6 hours, were compared to the in vivo gene expression profiles in order to evaluate the capability of this in vitro bioassay in predicting in vivo responses. METHODS: Lists of response genes were analysed with bioinformatics programs to identify common biological pathways induced in vivo as well as in vitro. Furthermore, overlapping genes and pathways were evaluated for possible involvement in the biological processes induced in vivo by datamining and consulting literature. RESULTS: For all three interventions, only a limited number of identical genes and a few common biological processes/pathways were found to be affected by the respective interventions. However, several enterocyte-specific regulatory and secreted effector proteins that responded in vitro could be related to processes regulated in vivo, i.e. processes related to mineral absorption, (epithelial) cell adherence and tight junction formation for zinc, microtubule and cytoskeleton integrity for amoxicillin, and cell-cycle progression and mucus production for rye. CONCLUSIONS: Short-term gene expression responses to dietary interventions as measured in the in vitro bioassay have a low predictability for long-term responses as measured in the intestinal mucosa in vivo. The short-term responses of a set regulatory and effector genes, as measured in this bioassay, however, provided additional insight into how specific processes in piglets and broilers may be modulated by "early" signalling molecules produced by enterocytes. The relevance of this set of regulatory/effector genes and cognate biological processes for zinc deficiency and supplementation, gluten allergy (rye), and amoxicillin administration in humans is discussed.

8.
J Appl Phycol ; 28(6): 3511-3525, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28035175

RESUMEN

The growing world population demands an increase in animal protein production. Seaweed may be a valuable source of protein for animal feed. However, a biorefinery approach aimed at cascading valorisation of both protein and non-protein seaweed constituents is required to realise an economically feasible value chain. In this study, such a biorefinery approach is presented for the green seaweed Ulva lactuca containing 225 g protein (N × 4.6) kg-1 dry matter (DM). The sugars in the biomass were solubilised by hot water treatment followed by enzymatic hydrolysis and centrifugation resulting in a sugar-rich hydrolysate (38.8 g L-1 sugars) containing glucose, rhamnose and xylose, and a protein-enriched (343 g kg-1 in DM) extracted fraction. This extracted fraction was characterised for use in animal feed, as compared to U. lactuca biomass. Based on the content of essential amino acids and the in vitro N (85 %) and organic matter (90 %) digestibility, the extracted fraction seems a promising protein source in diets for monogastric animals with improved characteristics as compared to the intact U. lactuca. The gas production test indicated a moderate rumen fermentation of U. lactuca and the extracted fraction, about similar to that of alfalfa. Reduction of the high content of minerals and trace elements may be required to allow a high inclusion level of U. lactuca products in animal diets. The hydrolysate was used successfully for the production of acetone, butanol, ethanol and 1,2-propanediol by clostridial fermentation, and the rhamnose fermentation pattern was studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...