Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Mol Plant Pathol ; 25(3): e13436, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38460112

RESUMEN

While the response of Arabidopsis thaliana to drought, herbivory or fungal infection has been well-examined, the consequences of exposure to a series of such (a)biotic stresses are not well studied. This work reports on the genetic mechanisms underlying the Arabidopsis response to single osmotic stress, and to combinatorial stress, either fungal infection using Botrytis cinerea or herbivory using Pieris rapae caterpillars followed by an osmotic stress treatment. Several small-effect genetic loci associated with rosette dry weight (DW), rosette water content (WC), and the projected rosette leaf area in response to combinatorial stress were mapped using univariate and multi-environment genome-wide association approaches. A single-nucleotide polymorphism (SNP) associated with DROUGHT-INDUCED 19 (DI19) was identified by both approaches, supporting its potential involvement in the response to combinatorial stress. Several SNPs were found to be in linkage disequilibrium with known stress-responsive genes such as PEROXIDASE 34 (PRX34), BASIC LEUCINE ZIPPER 25 (bZIP25), RESISTANCE METHYLATED GENE 1 (RMG1) and WHITE RUST RESISTANCE 4 (WRR4). An antagonistic effect between biotic and osmotic stress was found for prx34 and arf4 mutants, which suggests PRX34 and ARF4 play an important role in the response to the combinatorial stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Micosis , Estudio de Asociación del Genoma Completo , Arabidopsis/microbiología , Presión Osmótica , Estrés Fisiológico/genética , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética
2.
Front Insect Sci ; 4: 1334526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469340

RESUMEN

The industrial rearing of the yellow mealworm (Tenebrio molitor) for feed and food purposes on agricultural by-products may expose larvae and adults to entomopathogens used as biocontrol agents in crop production. Bacterial spores/toxins or fungal conidia from species such as Bacillus thuringiensis or Metarhizium brunneum could affect the survival and growth of insects. Therefore, the aim of this study was to investigate the potential benefits of a wheat bran diet supplemented with probiotic bacteria and dried egg white on larval development and survival and its effects on the gut microbiome composition. Two probiotic bacterial species, Pediococcus pentosaceus KVL B19-01 and Lactiplantibacillus plantarum WJB, were added to wheat bran feed with and without dried egg white, as an additional protein source, directly from neonate larval hatching until reaching a body mass of 20 mg. Subsequently, larvae from the various diets were exposed for 72 h to B. thuringiensis, M. brunneum, or their combination. Larval survival and growth were recorded for 14 days, and the bacterial microbiota composition was analyzed using 16S rDNA sequencing prior to pathogen exposure and on days 3 and 11 after inoculation with the pathogens. The results showed increased survival for T. molitor larvae reared on feed supplemented with P. pentosaceus in the case of co-infection. Larval growth was also impacted in the co-infection treatment. No significant impact of egg white or of P. pentosaceus on larval growth was recorded, while the addition of Lb. plantarum resulted in a minor increase in individual mass gain compared with infected larvae without the latter probiotic. On day 14, B. thuringiensis was no longer detected and the overall bacterial community composition of the larvae was similar in all treatments. On the other hand, the relative operational taxonomic unit (OTU) abundance was dependent on day, diet, and probiotic. Interestingly, P. pentosaceus was present throughout the experiments, while Lb. plantarum was not found at a detectable level, although its transient presence slightly improved larval performance. Overall, this study confirms the potential benefits of some probiotics during the development of T. molitor while underlining the complexity of the relationship between the host and its microbiome.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38114856

RESUMEN

In this paper, we take a historical perspective by going back to Verschaffelt's landmark study published in 1910, in which he found that glucosinolates were used as token stimuli by larvae of Pieris butterflies, specialist feeders on plants in the family Brassicaceae. This classic discovery provided key evidence for Fraenkel (Science 129:1466-1470, 1959) to elaborate on the function of secondary plant substances and for Ehrlich and Raven (Evolution 18:586-608, 1964) to put forward the hypothesis of insect-plant coevolution. The discovery by Schoonhoven (Kon Nederl Akad Wetensch Amsterdam Proc Ser C70:556-568, 1967) of taste neurons highly sensitive to glucosinolates in Pieris brassicae was an important milestone in elucidating the chemosensory basis of host-plant specialization. The molecular basis of glucosinolate sensitivity was elucidated recently (Yang et al., PLoS Genet 17, 2021) paving the way to unravel the evolution of gustatory receptors tuned to glucosinolates that are crucial for host-plant selection of Pieris butterflies. We propose a hypothetical model for the evolution of labeled-line neurons tuned to token stimuli.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/fisiología , Glucosinolatos , Insectos , Larva
4.
Insect Sci ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697732

RESUMEN

Black soldier fly larvae (Hermetia illucens) receive growing interest as a potential alternative animal feed source. These insects may be exposed to insecticide residues in the rearing substrate. This study aimed to investigate the effects of six different pyrethroid and organophosphate insecticides on this insect species' performance. The toxicity of two "model" substances for each of these classes (cypermethrin; pirimiphos-methyl) was quantified, with and without the synergist piperonyl butoxide (PBO). Critical effect doses corresponding to 10% yield (CED10) for cypermethrin (0.4 mg/kg) and pirimiphos-methyl (4.8 mg/kg) were determined. The addition of PBO to cypermethrin enhanced its relative potency with a factor 2.6. These data were compared against the relative toxicity of two analogue substances in each class (permethrin, deltamethrin; chlorpyrifos-methyl, malathion). Results suggest that exposure to concentrations complying with legal limits can cause significant reductions in yield. Exposure to multiple substances at lower concentrations resulted in negative additive and synergistic effects. Of the tested substances, deltamethrin was most toxic, causing 94% yield at 0.5 mg/kg. Analytical results suggested that transfer of tested substances to the larval biomass was substance- and concentration-specific, but appeared to be correlated to reduced yields and the presence of PBO. Transfer of organophosphates was overall low (<2%), but ranged from 8% to 75% for pyrethroids. Due to very low limits in insect biomass (∼0.01 mg/kg), high transfer may result in noncompliance. It is recommended that rearing companies implement lower contractual thresholds, and that policymakers consider adjusting legally allowed maximum residue levels in insect feed.

5.
Insects ; 14(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37504594

RESUMEN

The house cricket, Acheta domesticus, is a commonly reared insect for food and feed purposes. In 1977, a report described a colony collapse, which was caused by the single-stranded DNA virus Acheta domesticus densovirus (AdDV). Currently, there are no confirmed A. domesticus colonies free of AdDV, and viral disease outbreaks are a continuous threat to A. domesticus mass rearing. Correlations between cricket rearing density or temperature and AdDV abundance have been hypothesized, but experimental evidence is lacking. Optimised rearing conditions, including temperature and density, are key to cost-effective cricket production. In this study, house crickets were subjected to different combinations of rearing density (10, 20, 40 crickets per box) and temperature (25, 30, 35 °C) to study the effect on cricket survival, biomass, and AdDV abundance. Rearing temperature affected had a minor effect on survival, which ranged between 80 and 83%. Total cricket biomass increased with higher temperatures and higher densities. Viral abundance in crickets at the end of the rearing period was variable; however, high rearing density seemed to result in higher AdDV abundance. At 35 °C, a temperature considered suboptimal for house cricket production, viral abundance tended to be lower than at 25 or 30 °C.

6.
Sci Rep ; 13(1): 11197, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433881

RESUMEN

Novel malaria vector control strategies targeting the odour-orientation of mosquitoes during host-seeking, such as 'attract-and-kill' or 'push-and-pull', have been suggested as complementary tools to indoor residual spraying and long-lasting insecticidal nets. These would be particularly beneficial if they can target vectors in the peri-domestic space where people are unprotected by traditional interventions. A randomized double-blind placebo-control study was implemented in western Kenya to evaluate: a 'push' intervention (spatial repellent) using transfluthrin-treated fabric strips positioned at open eave gaps of houses; a 'pull' intervention placing an odour-baited mosquito trap at a 5 m distance from a house; the combined 'push-pull' package; and the control where houses contained all elements but without active ingredients. Treatments were rotated through 12 houses in a randomized-block design. Outdoor biting was estimated using human landing catches, and indoor mosquito densities using light-traps. None of the interventions provided any protection from outdoor biting malaria vectors. The 'push' reduced indoor vector densities dominated by Anopheles funestus by around two thirds. The 'pull' device did not add any benefit. In the light of the high Anopheles arabiensis biting densities outdoors in the study location, the search for efficient outdoor protection and effective pull components needs to continue.


Asunto(s)
Anopheles , Malaria , Animales , Humanos , Malaria/prevención & control , Mosquitos Vectores , Odorantes/prevención & control , Ligando de CD40
7.
J Pest Sci (2004) ; : 1-17, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37360044

RESUMEN

Root herbivores pose a major threat to agricultural crops. They are difficult to control and their damage often goes unnoticed until the larvae reach their most devastating late instar stages. Crop diversification can reduce pest pressure, generally without compromising yield. We studied how different diversified cropping systems affected the oviposition and abundance of the specialist cabbage root fly Delia radicum, the most important root herbivore in Brassica crops. The cropping systems included a monoculture, pixel cropping, and four variations of strip cropping with varying intra- and interspecific crop diversity, fertilization and spatial configuration. Furthermore, we assessed whether there was a link between D. radicum and other macroinvertebrates associated with the same plants. Cabbage root fly oviposition was higher in strip cropping designs compared to the monoculture and was highest in the most diversified strip cropping design. Despite the large number of eggs, there were no consistent differences in the number of larvae and pupae between the cropping systems, indicative of high mortality of D. radicum eggs and early instars especially in the strip cropping designs. D. radicum larval and pupal abundance positively correlated with soil-dwelling predators and detritivores and negatively correlated with other belowground herbivores. We found no correlations between the presence of aboveground insect herbivores and the number of D. radicum on the roots. Our findings indicate that root herbivore presence is determined by a complex interplay of many factors, spatial configuration of host plants, and other organisms residing near the roots. Supplementary Information: The online version contains supplementary material available at 10.1007/s10340-023-01629-1.

8.
J Invertebr Pathol ; 198: 107934, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37169329

RESUMEN

Temperature is an important abiotic factor influencing the survival and fitness of pathogens as well as their hosts. We investigated the effect of three temperatures (18 °C, 27 °C and 37 °C) on survival and performance of black soldier fly larvae (BSFL), Hermetia illucens L., upon infection by an entomopathogenic Gram-negative bacterium, Pseudomonas protegens Pf-5. The effect of different temperatures on pathogen fitness was investigated both in vivo and in vitro. Pathogen performance under exposure to the insect antimicrobial peptide cecropin was investigated at the three temperatures using radial-diffusion plate assays. Higher rearing temperatures resulted in higher larval survival, increased larval weight, and higher inhibitory activity of cecropin against P. protegens Pf-5. At higher temperature, bacterial growth, both in vivo and in vitro, was reduced, resulting in increased BSFL survival. These observations collectively indicate the important effect of rearing temperature on host-pathogen interactions and the possibility to apply temperature treatment in reducing entomopathogen effects in BSFL.


Asunto(s)
Cecropinas , Dípteros , Animales , Temperatura , Larva , Interacciones Huésped-Patógeno
9.
Pest Manag Sci ; 79(5): 1820-1828, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36641545

RESUMEN

BACKGROUND: The use of light-emitting diode (LED) lights in horticulture allows growers to adjust the light spectrum to optimize crop production and quality. However, changes in light quality can also influence plant-arthropod interactions, with possible consequences for pest management. The addition of far-red light has been shown to interfere with plant immunity, thereby increasing plant susceptibility to biotic stress and increasing pest performance. Far-red light also influences plant emission of volatile organic compounds (VOCs) and might thus influence tritrophic interactions with biological control agents. We investigated how far-red light influences the VOC-mediated attraction of the predatory mite Phytoseiulus persimilis to tomato plants infested with Tetranychus urticae, and its ability to control T. urticae populations. RESULTS: Far-red light significantly influences herbivore-induced VOC emissions of tomato plants, characterized by a change in relative abundance of terpenoids, but this did not influence the attraction of P. persimilis to herbivore-induced plants. Supplemental far-red light led to an increased population growth of T. urticae and increased numbers of P. persimilis. This resulted in a stronger suppression of T. urticae populations under supplemental far-red light, to similar T. urticae numbers as in control conditions without supplemental far-red light. CONCLUSION: We conclude that supplemental far-red light can change herbivore-induced VOC emissions but does not interfere with the attraction of the predator P. persimilis. Moreover, far-red light stimulates biological control of spider mites in glasshouse tomatoes due to increased population build-up of the biocontrol agent. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Solanum lycopersicum , Tetranychidae , Compuestos Orgánicos Volátiles , Animales , Compuestos Orgánicos Volátiles/farmacología , Plantas , Conducta Predatoria
10.
Plant Cell Environ ; 46(3): 931-945, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36514238

RESUMEN

Soil composition and herbivory are two environmental factors that can affect plant traits including flower traits, thus potentially affecting plant-pollinator interactions. Importantly, soil composition and herbivory may interact in these effects, with consequences for plant fitness. We assessed the main effects of aboveground insect herbivory and soil amendment with exuviae of three different insect species on visual and olfactory traits of Brassica nigra plants, including interactive effects. We combined various methodological approaches including gas chromatography/mass spectrometry, spectroscopy and machine learning to evaluate changes in flower morphology, colour and the emission of volatile organic compounds (VOCs). Soil amended with insect exuviae increased the total number of flowers per plant and VOC emission, whereas herbivory reduced petal area and VOC emission. Soil amendment and herbivory interacted in their effect on the floral reflectance spectrum of the base part of petals and the emission of 10 VOCs. These findings demonstrate the effects of insect exuviae as soil amendment on plant traits involved in reproduction, with a potential for enhanced reproductive success by increasing the strength of signals attracting pollinators and by mitigating the negative effects of herbivory.


Asunto(s)
Suelo , Compuestos Orgánicos Volátiles , Animales , Compuestos Orgánicos Volátiles/análisis , Polinización , Flores/anatomía & histología , Insectos , Herbivoria
11.
J Exp Bot ; 74(5): 1690-1704, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36560910

RESUMEN

Insect herbivores are amongst the most destructive plant pests, damaging both naturally occurring and domesticated plants. As sessile organisms, plants make use of structural and chemical barriers to counteract herbivores. However, over 75% of herbivorous insect species are well adapted to their host's defenses and these specialists are generally difficult to ward off. By actively antagonizing the number of insect eggs deposited on plants, future damage by the herbivore's offspring can be limited. Therefore, it is important to understand which plant traits influence attractiveness for oviposition, especially for specialist insects that are well adapted to their host plants. In this study, we investigated the oviposition preference of Pieris butterflies (Lepidoptera: Pieridae) by offering them the choice between 350 different naturally occurring Arabidopsis accessions. Using a genome-wide association study of the oviposition data and subsequent fine mapping with full genome sequences of 164 accessions, we identified WRKY42 and AOC1 as candidate genes that are associated with the oviposition preference observed for Pieris butterflies. Host plant choice assays with Arabidopsis genotypes impaired in WRKY42 or AOC1 function confirmed a clear role for WRKY42 in oviposition preference of female Pieris butterflies, while for AOC1 the effect was mild. In contrast, WRKY42-impaired plants, which were preferred for oviposition by butterflies, negatively impacted offspring performance. These findings exemplify that plant genotype can have opposite effects on oviposition preference and caterpillar performance. This knowledge can be used for breeding trap crops or crops that are unattractive for oviposition by pest insects.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mariposas Diurnas , Animales , Femenino , Mariposas Diurnas/genética , Larva , Estudio de Asociación del Genoma Completo , Arabidopsis/genética , Factores de Transcripción , Oviposición , Fitomejoramiento , Herbivoria , Plantas
12.
Am J Clin Nutr ; 116(4): 1146-1156, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36026477

RESUMEN

BACKGROUND: Edible insects are a novel source of animal protein. Moreover, edible insects contain iron concentrations similar to meat, potentially making them a valuable iron source for human consumers. Yet, it is unknown to what extent iron from insects is absorbed in humans. OBJECTIVES: In this exploratory study, we assessed fractional iron absorption from house crickets (Acheta domesticus) consumed with refined (low-phytate, noninhibiting) or nonrefined (high-phytate, inhibiting) meals. METHODS: Intrinsically [57Fe]-labeled and control crickets were reared. Six iron-balanced experimental meals were randomly administered crossover to 20 iron-depleted females (serum ferritin <25 µg/L; 18-30 y old), in 2 time-blocks of 3 consecutive days, 2 wk apart. Three meals consisted of refined maize flour porridge with either [57Fe]-labeled crickets, [58Fe]SO4 (reference meal), or unlabeled crickets plus [54Fe]SO4. The other 3 meals consisted of nonrefined maize flour porridge with the same respective additions. Blood samples were drawn to assess the 14-d isotope enrichment in erythrocytes, and meal-specific fractional iron absorption was calculated. In vitro digestion was used to explore possible explanations for unexpected findings. RESULTS: Mean fractional iron absorption from 57Fe-labeled house crickets with refined maize porridge (3.06%) and from refined maize porridge with unlabeled crickets (4.92%) was lower than from the reference meal (14.2%), with respective mean differences of -11.1% (95% CI: -12.6%, -9.68%) and -9.29% (95% CI: -10.8%, -7.77%). Iron absorption from all meals based on unrefined maize porridge was low (<3%), and did not differ for the 2 meals with crickets compared with the reference meal. In vitro digestion showed that chitin, chitosan, and calcium limited iron bioaccessibility to a large extent. CONCLUSIONS: Iron absorption from house crickets and fortified maize porridge with crickets is low, which may be explained by the presence of chitin and other inhibitors in the cricket biomass.This trial was registered at https://www.trialregister.nl as NL6821.


Asunto(s)
Quitosano , Gryllidae , Animales , Calcio , Femenino , Ferritinas , Alimentos Fortificados , Humanos , Absorción Intestinal , Hierro , Isótopos , Ácido Fítico , Zea mays
13.
Parasit Vectors ; 15(1): 259, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858931

RESUMEN

BACKGROUND: Providing protection from malaria vector bites, both indoors and outdoors, is crucial to curbing malaria parasite transmission. Screening of house entry points, especially with incorporated insecticides, confers significant protection but remains a costly and labour-intensive application. Use of spatial repellents has shown promise in creating areas of protection in peri-domestic areas. METHODS: This study aimed at comparing the protection provided by transfluthrin-treated and untreated complete screens over open eave gaps with incomplete transfluthrin-treated eave strips as a potential replacement for a full screen. Human landing catches were implemented independently inside and outside an experimental hut under controlled semi-field conditions, with insectary-reared Anopheles arabiensis mosquitoes. RESULTS: The odds of a female mosquito finding a human volunteer indoors and attempting to bite were similar whether the eaves were completely open or there was an untreated fabric strip fixed around the eaves. However, when the eave gap was completely screened without insecticide, the odds of receiving a bite indoors were reduced by 70% (OR 0.30, 95% CI 0.20-0.47). Adding transfluthrin to the full screen, further increased the protection indoors, with the odds of receiving a bite reduced by 92% (0.08, 95% CI 0.04-0.16) compared to the untreated screen. Importantly, the same protection was conferred when only a narrow transfluthrin-treated fabric strip was loosely fixed around the eave gap (OR 0.07, 95% CI 0.04-0.13). The impact of the transfluthrin treatment on outdoor biting was correlated with evening temperatures during the experiments. At lower evening temperatures, a transfluthrin-treated, complete screen provided moderate and variable protection from bites (OR 0.62, 95% CI 0.37-1.03), whilst at higher evening temperatures the odds of receiving a bite outdoors was over four times lower in the presence of transfluthrin, on either a full screen (OR 0.22 95% 0.12-0.38) or a fabric strip (OR 0.25, 95% 0.15-0.42), than when no treatment was present. CONCLUSION: The findings suggest that transfluthrin-treated fabric strips can provide a substitute for complete eave screens. They are a simple, easy-to-handle tool for protecting people from malaria mosquito bites indoors and potentially around the house in climatic areas where evening and night-time temperatures are relatively high.


Asunto(s)
Anopheles , Mordeduras y Picaduras de Insectos , Repelentes de Insectos , Insecticidas , Malaria , Animales , Femenino , Humanos , Mordeduras y Picaduras de Insectos/prevención & control , Repelentes de Insectos/farmacología , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores
14.
New Phytol ; 235(6): 2378-2392, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35717563

RESUMEN

Plants face attackers aboveground and belowground. Insect root herbivores can lead to severe crop losses, yet the underlying transcriptomic responses have rarely been studied. We studied the dynamics of the transcriptomic response of Brussels sprouts (Brassica oleracea var. gemmifera) primary roots to feeding damage by cabbage root fly larvae (Delia radicum), alone or in combination with aboveground herbivory by cabbage aphids (Brevicoryne brassicae) or diamondback moth caterpillars (Plutella xylostella). This was supplemented with analyses of phytohormones and the main classes of secondary metabolites; aromatic, indole and aliphatic glucosinolates. Root herbivory leads to major transcriptomic rearrangement that is modulated by aboveground feeding caterpillars, but not aphids, through priming soon after root feeding starts. The root herbivore downregulates aliphatic glucosinolates. Knocking out aliphatic glucosinolate biosynthesis with CRISPR-Cas9 results in enhanced performance of the specialist root herbivore, indicating that the herbivore downregulates an effective defence. This study advances our understanding of how plants cope with root herbivory and highlights several novel aspects of insect-plant interactions for future research. Further, our findings may help breeders develop a sustainable solution to a devastating root pest.


Asunto(s)
Brassica , Mariposas Nocturnas , Animales , Brassica/genética , Brassica/metabolismo , Glucosinolatos/metabolismo , Herbivoria/fisiología , Insectos/metabolismo , Larva/fisiología , Mariposas Nocturnas/fisiología , Transcriptoma/genética
15.
Appl Environ Microbiol ; 88(10): e0008422, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35532232

RESUMEN

Saprophagous fly larvae interact with a rich community of bacteria in decomposing organic matter. Larvae of some species, such as the black soldier fly, can process a wide range of organic residual streams into edible insect biomass and thus produce protein as a sustainable component of livestock feed. The microbiological safety of the insects and substrates remains a point of concern. Substrate-associated bacteria can dominate the larval gut microbiota, but the larvae can also alter the bacterial community in the substrate. However, the relative importance of substrate type and larval density in bacterial community dynamics is unknown. We investigated four larval densities (0 [control], 50, 100, or 200 larvae per container [520 mL; diameter, 75 mm]) and three feed substrates (chicken feed, chicken manure, and camelina substrate [50% chicken feed, 50% camelina oilseed press cake]) and sampled the bacterial communities of the substrates and larvae at three time points over 15 days. Although feed substrate was the strongest driver of microbiota composition over time, larval density significantly altered the relative abundances of several common bacterial genera, including potential pathogens, in each substrate and in larvae fed chicken feed. Bacterial communities of the larvae and substrate differed to a higher degree in chicken manure and camelina than in chicken feed. This supports the substrate-dependent impact of black soldier fly larvae on bacteria both within the larvae and in the substrate. This study indicates that substrate composition and larval density can alter bacterial community composition and might be used to improve insect microbiological safety. IMPORTANCE Black soldier fly larvae can process organic side streams into nutritious insect biomass, yielding a sustainable ingredient of animal feed. In processing such organic residues, the larvae impact the substrate and its microbiota. However, their role relative to the feed substrate in shaping the bacterial community is unknown. This may be important for the waste management industry to determine whether pathogens can be controlled by manipulating the larval density and the timing of harvest. We investigated how the type of feed substrate and the larval density (number of larvae per container) interacted to influence bacterial community composition in the substrates and larvae over time. Substrate type was the strongest driver of bacterial community composition, and the magnitude of the impact of the larvae depended on the substrate type and larval density. Thus, both substrate composition and larval density may be used to improve the microbiological safety of the larvae as animal feed.


Asunto(s)
Dípteros , Estiércol , Alimentación Animal/análisis , Animales , Bacterias , Pollos , Dípteros/microbiología , Larva/microbiología
16.
Trends Plant Sci ; 27(7): 646-654, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35248491

RESUMEN

Beneficial soil microorganisms can contribute to biocontrol of plant pests and diseases, induce systemic resistance (ISR) against attackers, and enhance crop yield. Using organic soil amendments has been suggested to stimulate the abundance and/or activity of beneficial indigenous microbes in the soil. Residual streams from insect farming (frass and exuviae) contain chitin and other compounds that may stimulate beneficial soil microbes that have ISR and biocontrol activity. Additionally, changes in plant phenotype that are induced by beneficial microorganisms may directly influence plant-pollinator interactions, thus affecting plant reproduction. We explore the potential of insect residual streams derived from the production of insects as food and feed to promote plant growth and health, as well as their potential benefits for sustainable agriculture.


Asunto(s)
Insectos , Desarrollo de la Planta , Animales , Plantas , Suelo , Microbiología del Suelo
17.
Oecologia ; 199(2): 243-255, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35192063

RESUMEN

Plants interact with a diversity of phytophagous insects above- and belowground. By inducing plant defence, one insect herbivore species can antagonize or facilitate other herbivore species feeding on the same plant, even when they are separated in space and time. Through systemic plant-mediated interactions, leaf-chewing herbivores may affect the preference and performance of root-feeding herbivores. We studied how six different leaf-chewing herbivore species of Brassica oleracea plants affected oviposition preference and larval performance of the root-feeding specialist Delia radicum. We expected that female D. radicum flies would oviposit where larval performance was highest, in accordance with the preference-performance hypothesis. We also assessed how the different leaf-chewing herbivore species affected defence-related gene expression in leaves and primary roots of B. oleracea, both before and after infestation with the root herbivore. Our results show that leaf-chewing herbivores can negatively affect the performance of root-feeding D. radicum larvae, although the effects were relatively weak. Surprisingly, we found that adult D. radicum females show a strong preference to oviposit on plants infested with a leaf-chewing herbivore. Defence-related genes in primary roots of B. oleracea plants were affected by the leaf-chewing herbivores, but these changes were largely overridden upon local induction by D. radicum. Infestation by leaf herbivores makes plants more attractive for oviposition by D. radicum females, while decreasing larval performance. Therefore, our findings challenge the preference-performance hypothesis in situations where other herbivore species are present.


Asunto(s)
Dípteros , Herbivoria , Animales , Femenino , Larva , Masticación , Hojas de la Planta , Raíces de Plantas/metabolismo
19.
New Phytol ; 232(6): 2475-2490, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34537968

RESUMEN

Plant-soil feedback (PSF) may influence plant-insect interactions. Although plant defense differs between shoot and root tissues, few studies have examined root-feeding insect herbivores in a PSF context. We examined here how plant growth and resistance against root-feeding Delia radicum larvae was influenced by PSF. We conditioned soil with cabbage plants that were infested with herbivores that affect D. radicum through plant-mediated effects: leaf-feeding Plutella xylostella caterpillars and Brevicoryne brassicae aphids, root-feeding D. radicum larvae, and/or added rhizobacterium Pseudomonas simiae WCS417r. We analyzed the rhizosphere microbial community, and in a second set of conspecific plants exposed to conditioned soil, we assessed growth, expression of defense-related genes, and D. radicum performance. The rhizosphere microbiome differed mainly between shoot and root herbivory treatments. Addition of Pseudomonas simiae did not influence rhizosphere microbiome composition. Plant shoot biomass, gene expression, and plant resistance against D. radicum larvae was affected by PSF in a treatment-specific manner. Soil conditioning overall reduced plant shoot biomass, Pseudomonas simiae-amended soil causing the largest growth reduction. In conclusion, shoot and root insect herbivores alter the rhizosphere microbiome differently, with consequences for growth and resistance of plants subsequently exposed to conditioned soil.


Asunto(s)
Áfidos , Brassica , Microbiota , Animales , Retroalimentación , Herbivoria , Larva , Raíces de Plantas , Rizosfera , Suelo
20.
J Chem Ecol ; 47(8-9): 810-818, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34463894

RESUMEN

Adults of many mosquito species feed on plants to obtain metabolic energy and to enhance reproduction. Mosquitoes primarily rely on olfaction to locate plants and are known to respond to a range of plant volatiles. We studied the olfactory response of the yellow fever mosquito Aedes aegypti to methyl jasmonate (MeJA) and cis-jasmone (CiJA), volatile compounds originating from the octadecanoid signaling pathway that plays a key role in plant defense against herbivores. Specifically, we investigated how Ae. aegypti of different ages responded to elevated levels of CiJA in two attractive odor contexts, either derived from Lima bean plants or human skin. Aedes aegypti females landed significantly less often on a surface with CiJA and MeJA compared to the solvent control, CiJA exerting a stronger reduction in landing than MeJA. Odor context (plant or human) had no significant main effect on the olfactory responses of Ae. aegypti females to CiJA. Mosquito age significantly affected the olfactory response, older females (7-9 d) responding more strongly to elevated levels of CiJA than young females (1-3 d) in either odor context. Our results show that avoidance of CiJA by Ae. aegypti is independent of odor background, suggesting that jasmonates are inherently aversive cues to these mosquitoes. We propose that avoidance of plants with elevated levels of jasmonates is adaptive to mosquitoes to reduce the risk of encountering predators that is higher on these plants, i.e. by avoiding 'enemy-dense-space'.


Asunto(s)
Aedes/fisiología , Conducta Animal/efectos de los fármacos , Ciclopentanos/farmacología , Oxilipinas/farmacología , Phaseolus/química , Piel/química , Acetatos/química , Acetatos/farmacología , Envejecimiento , Animales , Ciclopentanos/química , Femenino , Humanos , Isomerismo , Estadios del Ciclo de Vida , Odorantes/análisis , Oxilipinas/química , Phaseolus/metabolismo , Piel/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...