Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 20(3): 575-578, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34935833

RESUMEN

Phenol ester activated dipeptides that are reluctant to ring-close have been cyclised with the aid of sterically shielding metallo-porphyrins avoiding unwanted intermolecular reactions. The binding of ZnTPP to the dipyridine-functionalised activating phenolic ester was studied by NMR titrations and modelling. Staudinger-mediated cyclisations in the presence of ZnTPP increased the yield of the cyclic dipeptide from 16% to 40%.

2.
ACS Cent Sci ; 7(12): 1966-1968, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34963889
3.
ACS Org Inorg Au ; 1(2): 37-42, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34870280

RESUMEN

Despite the advances in the synthesis of mechanically interlocked molecules, a generally applicable approach to interlocked natural products, such as lasso peptides, is yet to be formulated. While amino acid sequences have been introduced into several rotaxanes, the key structural components have always been dictated by the method used for supramolecular preorganization. In this work, we report the use of an ester-functionalized, aromatic δ-amino acid as the central covalent templating unit in the synthesis of both a [2]catenane and a [2]rotaxane from the same multimacrocyclic intermediate. This represents a key step toward future synthetic peptide-based interlocked products.

4.
Nat Chem ; 13(9): 822-823, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34426683

Asunto(s)
Péptidos
5.
Chemistry ; 27(7): 2310-2314, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33200467

RESUMEN

After earlier unsuccessful attempts, this work reports the application of covalent templating for the synthesis of mechanically interlocked molecules (MiMs) bearing no supramolecular recognition sites. Two linear strands were covalently connected in a perpendicular fashion by a central ketal linkage. After subsequent attachment of the first strand to a template via temporary benzylic linkages, the second was linked to the template in a backfolding macrocyclization. The resulting pseudo[1]rotaxane structure was successfully converted to a [2]catenane via a second macrocyclization and cleavage of the ketal and temporary linkages.

6.
J Org Chem ; 85(5): 3146-3159, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31965801

RESUMEN

Incorporation of 2,5-dihydroxyterephthalate as a covalent scaffold in the axis of a 30-membered all-carbon macrocycle provides access to a modular series of rotaxanes. Installment of tethered alkynes or azides onto the terephthalic phenolic hydroxyl functionalities, which are situated at opposite sides of the macrocycle, gives versatile prerotaxane building blocks. The corresponding [2]rotaxanes are obtained by introduction of bulky stoppering ("capping") units at the tethers and subsequent cleavage of the covalent ring/thread ester linkages. Extension of this strategy via coupling of two prerotaxanes bearing complementary linker functionalities (i.e., azide and alkyne) and follow-up attachment of stopper groups provide efficient access to [n]rotaxanes. The applicability and modular nature of this novel approach were demonstrated by the synthesis of a series of [2]-, [3]-, and [4]rotaxanes. Furthermore, it is shown that the prerotaxanes allow late-stage functionalization of the ring fragment introducing further structural diversity.

7.
J Org Chem ; 85(2): 1202-1207, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31841007

RESUMEN

The neurotransmitter metabolite 3,4-dihydroxy-phenylglycolaldehyde (dopegal) damages neurons and the myocardium by protein cross-linking, resulting in conglomerations and cell death. We investigated this process on a synthetic scale, leading to the discovery of an Amadori-type rearrangement of dopegal in the reaction with several amino acids and neuropeptides. This alkylation also occurs with neurotransmitters, suggesting an influence of dopegal on neurochemical processes. The rearrangement occurs readily under physiological conditions.


Asunto(s)
Acetaldehído/análogos & derivados , Aminas Biogénicas/química , Neurotransmisores/química , Acetaldehído/química , Acetaldehído/toxicidad , Alquilación , Sistema Nervioso/efectos de los fármacos , Neurotransmisores/toxicidad , Análisis Espectral/métodos
8.
Org Lett ; 21(7): 2095-2100, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30912446

RESUMEN

In Nature, multicyclic peptides constitute a versatile molecule class with various biological functions. For their pharmaceutical exploitation, chemical methodologies that enable selective consecutive macrocyclizations are required. We disclose a combination of enzymatic macrocyclization, CLIPS alkylation, and oxime ligation to prepare tetracyclic peptides. Five new small molecular scaffolds and differently sized model peptides featuring noncanonical amino acids were synthesized. Enzymatic macrocyclization, followed by one-pot scaffold-assisted cyclizations, yielded 21 tetracyclic peptides in a facile and robust manner.

9.
Org Biomol Chem ; 17(8): 2103-2106, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30714599

RESUMEN

C-Terminal dipeptide isopropenyl esters were synthesised by a Cu(ii)-mediated Chan-Lam-Evans enol esterification of peptide carboxylic acids and isoprenyl boroxine. These shelf stable peptide esters could be coupled stereoselectively with a variety of amino acid and dipeptide nucleophiles in high yield and purity in the presence of pyrazole/DBU as the catalyst.

10.
Chembiochem ; 20(12): 1524-1529, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-30735312

RESUMEN

Disulfide-rich macrocyclic peptides-cyclotides, for example-represent a promising class of molecules with potential therapeutic use. Despite their potential their efficient synthesis at large scale still represents a major challenge. Here we report new chemoenzymatic strategies using peptide ligase variants-inter alia, omniligase-1-for the efficient and scalable one-pot cyclization and folding of the native cyclotides MCoTI-II, kalata B1 and variants thereof, as well as of the θ-defensin RTD-1. The synthesis of the kB1 variant T20K was successfully demonstrated at multi-gram scale. The existence of several ligation sites for each macrocycle makes this approach highly flexible and facilitates both the larger-scale manufacture and the engineering of bioactive, grafted cyclotide variants, therefore clearly offering a valuable and powerful extension of the existing toolbox of enzymes for peptide head-to-tail cyclization.


Asunto(s)
Ciclotidas/química , Defensinas , Péptido Sintasas , Ciclización , Ciclotidas/síntesis química , Defensinas/síntesis química , Defensinas/química , Péptido Sintasas/síntesis química , Péptido Sintasas/química , Proteínas de Plantas/síntesis química , Proteínas de Plantas/química
11.
J Org Chem ; 83(24): 15110-15117, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30451502

RESUMEN

The common para regioselectivity in Pictet-Spengler reactions with dopamine derivatives is redirected to the ortho position by a simple change of solvents. In combination with a chiral auxiliary on nitrogen, this ortho-selective Pictet-Spengler produced the 1-benzyltetrahydroisoquinoline alkaloids ( S)-crassifoline and ( S)-norcrassifoline and the bioactive 1,2-dioxygenated tetrahydroprotoberberine alkaloids ( S)-govaniadine, ( S)-caseamine, and ( S)-clarkeanidine with high enantiopurity. Ortho/para ratios up to 89:19 and diastereomeric ratios up to 85:15 were obtained during formation of the B-ring. The general applicability of this solvent-directed regioselectivity was demonstrated with a second Pictet-Spengler reaction as required for C-ring formation of caseamine (o/p = 14:86 in trifluoroethanol) and clarkeanidine (o/p = 86:14 in toluene).

12.
Chemistry ; 24(50): 13114-13117, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-29978923

RESUMEN

The regular bicyclic spiro motif is highly abundant given its synthetic accessibility while the diastereomer-virtually obtained through inversion at the central atom-is almost unknown. We have developed methodology to access the elusive inverted spiro architecture by employing a covalent template-directed approach. Comparison with the regular spiro bicycle analog unequivocally established the diastereomeric relationship, providing insight into the fascinating stereochemical and structural properties.

13.
Chembiochem ; 19(18): 1934-1938, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-29944773

RESUMEN

A broadly applicable one-pot methodology for the facile transformation of linear peptides into tetracyclic peptides through a chemoenzymatic peptide synthesis/chemical ligation of peptides onto scaffolds/copper(I)-catalyzed reaction (CEPS/CLIPS/CuAAC; "triple-C") locking methodology is reported. Linear peptides with varying lengths (≥14 amino acids), comprising two cysteines and two azidohomoalanines (Aha), were efficiently cyclized head-to-tail by using the peptiligase variant omniligase-1 (CEPS). Subsequent ligation-cyclization with tetravalent (T41/2 ) scaffolds containing two bromomethyl groups (CLIPS) and two alkyne functionalities (CuAAC) yielded isomerically pure tetracyclic peptides. Sixteen different functional tetracycles, derived from bicyclic inhibitors against urokinase plasminogen activator (uPA) and coagulation factor XIIa (FXIIa), were successfully synthesized and their bioactivities evaluated. Two of these (FF-T41/2 ) exhibited increased inhibitory activity against FXIIa, compared with a bicyclic control peptide. The corresponding hetero-bifunctional variants (UF/FU-T41/2 ), with a single copy of each inhibitory sequence, exhibited micromolar activities against both uPA and FXIIa; thus illustrating the potential of the "bifunctional tetracyclic peptide" inhibitor concept.


Asunto(s)
Péptidos Cíclicos/síntesis química , Péptidos/química , Alanina/análogos & derivados , Alanina/química , Secuencia de Aminoácidos , Técnicas Químicas Combinatorias , Ciclización , Cisteína/química , Factor XIIa/antagonistas & inhibidores , Humanos , Modelos Moleculares , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores
14.
Org Biomol Chem ; 16(4): 609-618, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29300408

RESUMEN

The synthesis of thymosin-α1, an acetylated 28 amino acid long therapeutic peptide, via conventional chemical methods is exceptionally challenging. The enzymatic coupling of unprotected peptide segments in water offers great potential for a more efficient synthesis of peptides that are difficult to synthesize. Based on the design of a highly engineered peptide ligase, we developed a fully convergent chemo-enzymatic peptide synthesis (CEPS) process for the production of thymosin-α1via a 14-mer + 14-mer segment condensation strategy. Using structure-inspired enzyme engineering, the thiol-subtilisin variant peptiligase was tailored to recognize the respective 14-mer thymosin-α1 segments in order to create a clearly improved biocatalyst, termed thymoligase. Thymoligase catalyzes peptide bond formation between both segments with a very high efficiency (>94% yield) and is expected to be well applicable to many other ligations in which residues with similar characteristics (e.g. Arg and Glu) are present in the respective positions P1 and P1'. The crystal structure of thymoligase was determined and shown to be in good agreement with the model used for the engineering studies. The combination of the solid phase peptide synthesis (SPPS) of the 14-mer segments and their thymoligase-catalyzed ligation on a gram scale resulted in a significantly increased, two-fold higher overall yield (55%) of thymosin-α1 compared to those typical of existing industrial processes.


Asunto(s)
Péptido Sintasas/química , Timalfasina/síntesis química , Secuencia de Aminoácidos , Mutación , Péptido Sintasas/genética , Ingeniería de Proteínas/métodos , Técnicas de Síntesis en Fase Sólida/métodos
15.
Angew Chem Int Ed Engl ; 57(2): 501-505, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29193727

RESUMEN

We report a one-pot ligation/cyclization technology for the rapid and clean conversion of linear peptides into tricyclic peptides that is based on using tetravalent scaffolds containing two benzyl bromide and two alkyne moieties. These react via CLIPS/CuAAC reactions with cysteines and azides in the peptide. Flexibility in the scaffolds is key to the formation of isomerically pure products as the flexible scaffolds T41 and T42 mostly promote the formation of single isomeric tricycles while the rigid scaffolds T43 and T44 do not yield clean products. There seems to be no limitation to the number and types of amino acids present as 18 canonical amino acids were successfully implemented. We also observed that azides at the peptide termini and cysteine residues in the center gave better results than compounds with the functional groups placed the other way round.

16.
Drug Discov Today Technol ; 26: 11-16, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29249237

RESUMEN

The recent advancement of peptide macrocycles as promising therapeutics creates a need for novel methodologies for their efficient synthesis and (large scale) production. Within this context, due to the favorable properties of biocatalysts, enzyme-mediated methodologies have gained great interest. Enzymes such as sortase A, butelase 1, peptiligase and omniligase-1 represent extremely powerful and valuable enzymatic tools for peptide ligation, since they can be applied to generate complex cyclic peptides with exquisite biological activity. Therefore, the use of enzymatic strategies will effectively supplement the scope of existing chemical methodologies and will accelerate the development of future cyclic peptide therapeutics. The advantages and disadvantages of the different enzymatic methodologies will be discussed in this review.


Asunto(s)
Péptidos/química , Catálisis , Ciclización , Cisteína Endopeptidasas/química , Subtilisina/química
18.
Front Plant Sci ; 8: 1342, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824678

RESUMEN

E-2-hexenal is a volatile compound that is commonly emitted by wounded or stressed plants. It belongs to the group of so-called green leaf volatiles (GLVs), which play an important role in transferring information to plants and insects. While most biosynthetic enzymes upstream of E-2-hexenal have been studied extensively, much less is known about the enzyme responsible for the conversion from Z-3- to E-2-hexenal. In this study we have identified two (3Z):(2E)-hexenal isomerases (HIs) from cucumber fruits by classical biochemical fractionation techniques and we were able to confirm their activity by heterologous expression. Recombinant protein of the HIs did not only convert the leaf aldehyde Z-3-hexenal to E-2-hexenal, but also (Z,Z)-3,6-nonadienal to (E,Z)-2,6-nonadienal, these last two representing major flavor volatiles of cucumber fruits. Transient expression of the cucumber HIs in Nicotiana benthamiana leaves drastically changed the GLV bouquet of damaged plants from a Z-3- to an E-2-enriched GLV profile. Furthermore, transcriptional analysis revealed that the two HIs showed distinct expression patterns. While HI-1 was specifically expressed in the flesh of cucumber fruits HI-2 was expressed in leaves as well. Interestingly, wounding of cucumber leaves caused only a slight increase in HI-2 transcript levels. These results demonstrate that cucumber HIs are responsible for the rearrangement of Z-3-aldehydes in both leaves and fruits. Future research will reveal the physiological importance of an increased conversion to E-2-aldehydes for plants and insects.

19.
J Proteome Res ; 16(7): 2457-2471, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28516784

RESUMEN

Identification of dynamic protein-protein interactions at the peptide level on a proteomic scale is a challenging approach that is still in its infancy. We have developed a system to cross-link cells directly in culture with the special lysine cross-linker bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). We used the Gram-positive model bacterium Bacillus subtilis as an exemplar system. Within 5 min extensive intracellular cross-linking was detected, while intracellular cross-linking in a Gram-negative species, Escherichia coli, was still undetectable after 30 min, in agreement with the low permeability in this organism for lipophilic compounds like BAMG. We were able to identify 82 unique interprotein cross-linked peptides with <1% false discovery rate by mass spectrometry and genome-wide database searching. Nearly 60% of the interprotein cross-links occur in assemblies involved in transcription and translation. Several of these interactions are new, and we identified a binding site between the δ and ß' subunit of RNA polymerase close to the downstream DNA channel, providing a clue into how δ might regulate promoter selectivity and promote RNA polymerase recycling. Our methodology opens new avenues to investigate the functional dynamic organization of complex protein assemblies involved in bacterial growth. Data are available via ProteomeXchange with identifier PXD006287.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Glutaratos/química , Mapeo de Interacción de Proteínas/métodos , Succinimidas/química , Secuencia de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Reactivos de Enlaces Cruzados/química , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glutamato Deshidrogenasa/química , Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/metabolismo , Biogénesis de Organelos , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Especificidad de la Especie , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
20.
Nat Commun ; 8: 15392, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28541349

RESUMEN

Due to their well-defined three-dimensional geometry, spiro compounds are widely utilized in drug research. From the central tetrahedral carbon atom, besides the regular structure, an inverted spiro connectivity may be envisioned. Here we disclose the synthesis of this molecule class that we have coined quasi[1]catenanes. Next to their fascinating and aesthetic shape, the higher compactness as compared to regular spiro bicycles is noteworthy. To enable synthetic access to compact entangled multimacrocyclic molecules, we have developed a new strategy. The key element is a template, which is covalently connected to the linear precursors, and spatially directs the sterically congested backfolding macrocyclizations that are required to give quasi[1]catenanes. Similarly, quasi[1]rotaxanes are made.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...