Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(7): 3393-3401, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38330919

RESUMEN

The hydrogenation of C1 feedstocks (CO and CO2) has been investigated using ruthenium complexes [RuHCl(CO)(PN3P)] as the catalyst. PN3P pincer ligands containing amines in the linker between the central pyridine donor and the phosphorus donors with bulky substituents (tert-butyl (1) or TMPhos (2)) are required to obtain mononuclear single-site catalysts that can be activated by the addition of KOtBu to generate stable five-coordinate complexes [RuH(CO)(PN3P-H)], whereby the pincer ligand has been deprotonated. Activation of hydrogen takes place via heterolytic cleavage to generate [RuH2(CO)(PN3P)], but in the presence of CO, coordination of CO occurs preferentially to give [RuH(CO)2(PN3P-H)]. This complex can be protonated to give the cationic complex [RuH(CO)2(PN3P)]+, but it is unable to activate H2 heterolytically. In the case of the less coordinating CO2, both ruthenium complexes 1 and 2 are highly efficient as CO2 hydrogenation catalysts in the presence of a base (DBU), which in the case of the TMPhos ligand results in a TON of 30,000 for the formation of formate.

2.
Dalton Trans ; 52(47): 17954-17965, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37982283

RESUMEN

Dioxaphosphabicyclo[2.2.2]octanes (L1-L4) have been prepared in a one-pot reaction from tris(hydroxymethyl)phosphine and various α,ß-unsaturated ketones. The non-volatile phosphines oxidise very slowly in air. They possess highly upfield 31P chemical shifts (-59 to -70 ppm), small cone angles (121-140°) and a similar electronic parameter to PPh3. Reaction of L1 with [Rh(acac)(CO)2] gave the complex [Rh(acac)(CO)(L1)] with a ν(CO) of 1981.5 cm-1, whereas reaction L1 with [Rh(CO)2Cl]2 gave [Rh(CO)(L1)2Cl] with a ν(CO) of 1979.9 cm-1, remarkably similar to the CO stretching frequencies reported for analogous PPh3 complexes. The cage phosphines were explored as ligands in rhodium catalysed hydroformylation of 1-octene. All of the ligands gave a linear selectivity to n-nonanal of 68%, regardless of the substituents. However the ligand substituents had a significant effect on the catalyst activity, with increased steric bulk around the coordination environment giving a three-fold increase in aldehyde yield. The phosphines undergo ligand subsitution with [Pd(MeCN)2Cl2] forming square planar trans-[Pd(L)2Cl2] complexes. Subsequent reduction with hydrazine furnishes homoleptic tetravalent [Pd(L1)4] which was applied as a catalyst in Suzuki-Miyaura couplings, furnishing the C-C coupled products in moderate yields.

3.
Commun Chem ; 6(1): 85, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120598

RESUMEN

Secondary phosphines are important building blocks in organic chemistry as their reactive P-H bond enables construction of more elaborate molecules. In particular, they can be used to construct tertiary phosphines that have widespread applications as organocatalysts, and as ligands in metal-complex catalysis. We report here a practical synthesis of the bulky secondary phosphine synthon 2,2,6,6-tetramethylphosphinane (TMPhos). Its nitrogen analogue tetramethylpiperidine, known for over a century, is used as a base in organic chemistry. We obtained TMPhos on a multigram scale from an inexpensive air-stable precursor, ammonium hypophosphite. TMPhos is also a close structural relative of di-tert-butylphosphine, a key component of many important catalysts. Herein we also describe the synthesis of key derivatives of TMPhos, with potential applications ranging from CO2 conversion to cross-coupling and beyond. The availability of a new core phosphine building block opens up a diverse array of opportunities in catalysis.

4.
J Am Chem Soc ; 133(7): 2198-204, 2011 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21271705

RESUMEN

A donor-acceptor polymer semiconductor, PDQT, comprising diketopyrrolopyrrole (DPP) and ß-unsubstituted quaterthiophene (QT) for organic thin film transistors (OTFTs) is reported. This polymer forms ordered layer-by-layer lamellar packing with an edge-on orientation in thin films even without thermal annealing. The strong intermolecular interactions arising from the fused aromatic DPP moiety and the DPP-QT donor-acceptor interaction facilitate the spontaneous self-assembly of the polymer chains into close proximity and form a large π-π overlap, which are favorable for intermolecular charge hopping. The well-interconnected crystalline grains form efficient intergranular charge transport pathways. The desirable chemical, electronic, and morphological structures of PDQT bring about high hole mobility of up to 0.97 cm(2)/(V·s) in OTFTs with polymer thin films annealed at a mild temperature of 100 °C and similarly high mobility of 0.89 cm(2)/(V·s) for polymer thin films even without thermal annealing.

5.
Dalton Trans ; 39(3): 807-14, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20066225

RESUMEN

Reaction of the amido-bridged zirconium complex (CpSiMe(2)NSiMe(2)Cp)ZrCH(3) (1) (Cp = C(5)H(4)) with half an equivalent of B(C(6)F(5))(3) or Ph(3)CB(C(6)F(5))(4) afforded the binuclear zirconium complexes [(CpSiMe(2)NSiMe(2)Cp)Zr)(2)(mu-CH(3))][RB(C(6)F(5))(3)] (2a, R = CH(3), 2b, R = C(6)F(5)) with a methyl group as the bridge between the two zirconium atoms. In the presence of one equivalent of B(C(6)F(5))(3) or Ph(3)C(C(6)F(5))(4), 1 was transformed to the zwitterionic complexes [(CpSiMe(2)NSiMe(2)Cp)Zr][RB(C(6)F(5))(3)] (3a, R = CH(3), 3b, R = C(6)F(5)) which are free of a metal-bound sigma-alkyl ligand. 2b is stable with Me(3)Al while 3b combined with Me(3)Al to form a hetero-binuclear complex [(CpSiMe(2)NSiMe(2)Cp)Zr(mu-CH(3))]Al(CH(3))(2)][B(C(6)F(5))(4)] (4) as shown by NMR spectroscopy at room temperature. Treatment of 2a or 3a with an excess of Me(3)Al led to (CpSiMe(2)NSiMe(2)Cp)Zr(C(6)F(5)) (5) through a group exchange process. 2b, 3a and 5 have been characterized by X-ray diffraction studies. 2b, 2b, 3a and 3b were highly active catalysts for ethylene polymerization and copolymerization with 1-octene in the presence of trialkylaluminium, but the binuclear zirconium complexes (2a and 2b) showed higher activities than their mononuclear counterparts 3a and 3b. Polymerization activities varied with the trialkylaluminiums and increased with the trialkylaluminium concentration applied in the system. The product existed mainly in the form of Al(PE)(3) with polymeric chains, and its molecular weight and distribution were greatly influenced by the type and amount of trialkylaluminium applied in the catalytic system.

6.
J Am Chem Soc ; 127(27): 9913-23, 2005 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-15998098

RESUMEN

Highly active transition metal ethylene polymerization catalysts across the transition series have been investigated for their ability to catalyze chain growth on zinc. In reactions of various catalysts with ZnEt(2), product distributions range from Schulz-Flory to Poisson, with several catalysts showing intermediate behavior. A statistical modeling program is introduced to correlate product distributions with the relative rates of propagation, chain transfer to zinc, and beta-H transfer. Six regimes have been identified, ranging from Schulz-Flory to pure Poisson where chain transfer to metal is the only termination process, through to combined alkane/alkene distributions where beta-H transfer is competitive with chain transfer to metal. It is concluded that, while catalyzed chain growth (CCG) is favored by a reasonable match between the bond dissociation energies of both the main group and transition metal alkyl species, the M-C bond energies of the bridging alkyl species, and hence the stabilities of any hetero-bimetallic intermediates or transition states, are key. The latter are strongly influenced by the steric environment around the participating metal centers, more bulky ligands leading to a weakening of the bonds to the bridging alkyl groups; CCG is thus usually more favored for sterically hindered catalysts.

7.
J Am Chem Soc ; 126(34): 10701-12, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15327329

RESUMEN

The bis(imino)pyridine iron complex, [[2,6-(MeC=N-2,6-iPr2C6H3)2C5H)N]FeCl2] (1), in combination with MAO and ZnEt2 (> 500 equiv.), is shown to catalyze polyethylene chain growth on zinc. The catalyzed chain growth process is characterized by an exceptionally fast and reversible exchange of the growing polymer chains between the iron and zinc centers. Upon hydrolysis of the resultant ZnR2 product, a Poisson distribution of linear alkanes is obtained; linear alpha-olefins with a Poisson distribution can be generated via a nickel-catalyzed displacement reaction. Other dialkylzinc reagents such as ZnMe2 and ZniPr2 also show catalyzed chain growth; in the case of ZnMe2 a slight broadening of the product distribution is observed. The products obtained from Zn(CH2Ph)2 show evidence for chain transfer but not catalyzed chain growth, whereas ZnPh2 shows no evidence for chain transfer. The Group 13 metal alkyl reagents AlR3 (R = Me, Et, octyl, IBu) and GaR3 (R = Et, nBu) act as highly efficient chain transfer agents, whereas GaMe3 exhibits behavior close to catalyzed chain growth. LinBu, MgnBu2 and BEt3 result in very low activity catalyst systems. SnMe4 and PbEt4 give active catalysts, but with very little chain transfer to Sn or Pb. The remarkably efficient iron catalyzed chain growth reaction for ZnEt2 compared to other metal alkyls can be rationalized on the basis of: (1) relatively low steric hindrance around the zinc center, (2) their monomeric nature in solution, (3) the relatively weak Zn-C bond, and (4) a reasonably close match in Zn-C and Fe-C bond strengths.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...