Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood ; 140(26): 2844-2848, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35960811

RESUMEN

Recombinant human tissue plasminogen activator (rh-tPA) is an important thrombolytic agent for treatment of acute ischemic stroke. It requires fibrin binding for plasminogen activation. In contrast, Microlyse, a novel thrombolytic agent, requires von Willebrand factor (VWF) binding for plasminogen activation. We compared rh-tPA with Microlyse, administered 20 minutes after inducing thrombosis, in 2 randomized blinded acute ischemic stroke mouse models. Thrombosis was induced in the middle cerebral artery with different experimental triggers. Where thrombin infusion generates fibrin-rich thrombi, topical FeCl3 application generates platelet-rich thrombi. In the fibrin-rich model, both rh-tPA and Microlyse increased cortical reperfusion (determined by laser speckle imaging) 10 minutes after therapy administration (35.8 ± 17.1%; P = .001 39.3 ± 13.1%; P < .0001; 15.6 ± 7.5%, respectively, vs vehicle). In addition, both thrombolytic agents reduced cerebral lesion volume (determined by magnetic resonance imaging) after 24 hours (18.9 ± 11.2 mm3; P = .033; 16.1 ± 13.9 mm3; P = .018; 26.6 ± 5.6 mm3, respectively, vs vehicle). In the platelet-rich model, neither rh-tPA nor Microlyse increased cortical reperfusion 10 minutes after therapy (7.6 ± 8.8%; P = .216; 16.3 ± 13.9%; P = .151; 10.1 ± 7.9%, respectively, vs vehicle). However, Microlyse, but not rh-tPA, decreased cerebral lesion volumes (13.9 ± 11.4 mm3; P < .001; 23.6 ± 11.1 mm3; P = .188; 30.3 ± 10.9 mm3, respectively, vs vehicle). These findings support broad applicability of Microlyse in ischemic stroke, irrespective of the thrombus composition.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Tromboembolia , Trombosis , Ratones , Humanos , Animales , Activador de Tejido Plasminógeno/farmacología , Activador de Tejido Plasminógeno/uso terapéutico , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Factor de von Willebrand/uso terapéutico , Fibrina/metabolismo , Terapia Trombolítica , Plasminógeno/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo
2.
J Thromb Haemost ; 20(5): 1213-1222, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35170225

RESUMEN

BACKGROUND: Thrombomodulin on endothelial cells can form a complex with thrombin. This complex has both anticoagulant properties, by activating protein C, and clot-protective properties, by activating thrombin-activatable fibrinolysis inhibitor (TAFI). Activated TAFI (TAFIa) inhibits plasmin-mediated fibrinolysis. OBJECTIVES: TAFIa inhibition is considered a potential antithrombotic strategy. So far, this goal has been pursued by developing compounds that directly inhibit TAFIa. In contrast, we here describe variable domain of heavy-chain-only antibody (VhH) clone 1 that inhibits TAFI activation by targeting human thrombomodulin. METHODS: Two llamas (Lama Glama) were immunized, and phage display was used to select VhH anti-thrombomodulin (TM) clone 1. Affinity was determined with surface plasmon resonance and binding to native TM was confirmed with flow cytometry. Clone 1 was functionally assessed by competition, clot lysis, and thrombin generation assays. Last, the effect of clone 1 on tPA-mediated fibrinolysis in human whole blood was investigated in a microfluidic fibrinolysis model. RESULTS: VhH anti-TM clone 1 bound recombinant TM with a binding affinity of 1.7 ± 0.4 nM and showed binding to native TM. Clone 1 competed with thrombin for binding to TM and attenuated TAFI activation in clot lysis assays and protein C activation in thrombin generation experiments. In a microfluidic fibrinolysis model, inhibition of TM with clone 1 fully prevented TAFI activation. DISCUSSION: We have developed VhH anti-TM clone 1, which inhibits TAFI activation and enhances tPA-mediated fibrinolysis under flow. Different from agents that directly target TAFIa, our strategy should preserve direct TAFI activation via thrombin.


Asunto(s)
Carboxipeptidasa B2 , Carboxipeptidasa B2/metabolismo , Células Clonales/metabolismo , Células Endoteliales/metabolismo , Fibrinólisis , Humanos , Proteína C/metabolismo , Trombina/metabolismo , Trombomodulina/química
3.
Int J Pharm X ; 1: 100020, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31517285

RESUMEN

Targeted delivery of therapeutics is an attractive strategy for vascular diseases. Recently, variable domains of heavy-chain-only antibodies (VHHs) have gained momentum as targeting ligands to achieve this. Targeting ligands need adequate conjugation to the preferred delivery platform. When choosing a conjugation method, two features are critical: a fixed and specified stoichiometry and an orientation of the conjugated targeting ligand that preserves its functional binding capacity. We here describe a comparison of popular maleimide-thiol conjugation with state-of-the-art "click chemistry" for conjugating VHHs. First, we demonstrate the modification of VHHs with azide via Sortase A mediated transpeptidation. Subsequently, optimal clicking conditions were found at a temperature of 50 °C, using a 3:1 M ratio of DBCO-PEG:VHH-azide and an incubation time of 18 h. Second, we show that stoichiometry was controllable with click chemistry and produced defined conjugates, whereas maleimide-thiol conjugation resulted in diverse reaction products. In addition, we show that all VHHs - independent of the conjugation method or conjugated residue - still specifically bind their cognate antigen. Yet, VHH's functional binding capacities after click chemistry were at least equal or better than maleimide thiol conjugates. Together these data underline that click chemistry is superior to maleimide-thiol conjugation for conjugating targeting ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...