Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Int J Cancer ; 152(3): 511-523, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36069222

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma, the main cellular constituents of which are cancer-associated fibroblasts (CAFs). Stroma-targeting agents have been proposed to improve the poor outcome of current treatments. However, clinical trials using these agents showed disappointing results. Heterogeneity in the PDAC CAF population was recently delineated demonstrating that both tumor-promoting and tumor-suppressive activities co-exist in the stroma. Here, we aimed to identify biomarkers for the CAF population that contribute to a favorable outcome. RNA-sequencing reads from patient-derived xenografts (PDXs) were mapped to the human and mouse genome to allocate the expression of genes to the tumor or stroma. Survival meta-analysis for stromal genes was performed and applied to human protein atlas data to identify circulating biomarkers. The candidate protein was perturbed in co-cultures and assessed in existing and novel single-cell gene expression analysis from control, pancreatitis, pancreatitis-recovered and PDAC mouse models. Serum levels of the candidate biomarker were measured in two independent cohorts totaling 148 PDAC patients and related them to overall survival. Osteoglycin (OGN) was identified as a candidate serum prognostic marker. Single-cell analysis indicated that Ogn is derived from a subgroup of inflammatory CAFs. Ogn-expressing fibroblasts are distinct from resident healthy pancreatic stellate cells and arise during pancreatitis. Serum OGN levels were prognostic for favorable overall survival in two independent PDAC cohorts (HR = 0.47, P = .042 and HR = 0.53, P = .006). Altogether, we conclude that high circulating OGN levels inform on a previously unrecognized subgroup of CAFs and predict favorable outcomes in resectable PDAC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis , Humanos , Ratones , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Pancreatitis/patología , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Nat Rev Mol Cell Biol ; 24(3): 221-236, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36175766

RESUMEN

Organ development and homeostasis involve dynamic interactions between individual cells that collectively regulate tissue architecture and function. To ensure the highest tissue fidelity, equally fit cell populations are continuously renewed by stochastic replacement events, while cells perceived as less fit are actively removed by their fitter counterparts. This renewal is mediated by surveillance mechanisms that are collectively known as cell competition. Recent studies have revealed that cell competition has roles in most, if not all, developing and adult tissues. They have also established that cell competition functions both as a tumour-suppressive mechanism and as a tumour-promoting mechanism, thereby critically influencing cancer initiation and development. This Review discusses the latest insights into the mechanisms of cell competition and its different roles during embryonic development, homeostasis and cancer.


Asunto(s)
Competencia Celular , Neoplasias , Humanos , Fenómenos Fisiológicos Celulares , Desarrollo Embrionario , Homeostasis
5.
Biol Open ; 11(12)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36350252

RESUMEN

The rapid renewal of the epithelial gut lining is fuelled by stem cells that reside at the base of intestinal crypts. The signal transduction pathways and morphogens that regulate intestinal stem cell self-renewal and differentiation have been extensively characterised. In contrast, although extracellular matrix (ECM) components form an integral part of the intestinal stem cell niche, their direct influence on the cellular composition is less well understood. We set out to systematically compare the effect of two ECM classes, the interstitial matrix and the basement membrane, on the intestinal epithelium. We found that both collagen I and laminin-containing cultures allow growth of small intestinal epithelial cells with all cell types present in both cultures, albeit at different ratios. The collagen cultures contained a subset of cells enriched in fetal-like markers. In contrast, laminin increased Lgr5+ stem cells and Paneth cells, and induced crypt-like morphology changes. The transition from a collagen culture to a laminin culture resembled gut development in vivo. The dramatic ECM remodelling was accompanied by a local expression of the laminin receptor ITGA6 in the crypt-forming epithelium. Importantly, deletion of laminin in the adult mouse resulted in a marked reduction of adult intestinal stem cells. Overall, our data support the hypothesis that the formation of intestinal crypts is induced by an increased laminin concentration in the ECM.


Asunto(s)
Laminina , Células Madre , Animales , Ratones , Colágeno/metabolismo , Matriz Extracelular , Laminina/metabolismo , Laminina/farmacología , Células de Paneth/metabolismo , Intestinos
6.
EMBO Mol Med ; 14(12): e16194, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36321561

RESUMEN

The majority of colorectal cancers (CRCs) present with early mutations in tumor suppressor gene APC. APC mutations result in oncogenic activation of the Wnt pathway, which is associated with hyperproliferation, cytoskeletal remodeling, and a global increase in mRNA translation. To compensate for the increased biosynthetic demand, cancer cells critically depend on protein chaperones to maintain proteostasis, although their function in CRC remains largely unexplored. In order to investigate the role of molecular chaperones in driving CRC initiation, we captured the transcriptomic profiles of murine wild type and Apc-mutant organoids during active transformation. We discovered a strong transcriptional upregulation of Hspb1, which encodes small heat shock protein 25 (HSP25). We reveal an indispensable role for HSP25 in facilitating Apc-driven transformation, using both in vitro organoid cultures and mouse models, and demonstrate that chemical inhibition of HSP25 using brivudine reduces the development of premalignant adenomas. These findings uncover a hitherto unknown vulnerability in intestinal transformation that could be exploited for the development of chemopreventive strategies in high-risk individuals.


Asunto(s)
Transcriptoma , Animales , Ratones , Regulación hacia Arriba
7.
BMC Gastroenterol ; 22(1): 383, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962368

RESUMEN

BACKGROUND: Familial adenomatous polyposis (FAP) is a rare autosomal dominant disease characterized by germline mutations in the Adenomatous Polyposis Coli (APC) gene, resulting in the development of numerous colorectal adenomas. As these patients have a high risk of developing colorectal cancer (CRC), guidelines suggest prophylactic colectomy during early adulthood, however, adenoma development is still observed in the remaining intestinal tract. Therefore, FAP patients would benefit from chemoprevention strategies reducing the development of adenomas. Recent work in mice reveals a chemopreventive effect of lithium on the development of adenomas by inhibiting the expansion of Apc mutated intestinal stem cells (ISCs) within the crypts of normal intestinal mucosa. Here, we aim to investigate the effect of lithium on the spread of APC mutant cells within the human intestinal epithelium. METHODS: This prospective phase II single arm trial has a duration of 18 months. FAP patients (18-35 years) with a genetically confirmed APC mutation who did not undergo colectomy will be treated with lithium carbonate orally achieving a serum level of 0.2-0.4 mmol/l between month 6 and 12. Colonoscopy with biopsies of normal intestinal mucosa will be performed at baseline and every six months. The primary endpoint is the effect of lithium on the spread of APC mutant cells within intestinal crypts over time by using APC specific marker NOTUM in situ hybridization. Secondary endpoints include change in adenoma burden, patient reported side effects and safety-outcomes. Total sample size is 12 patients and recruitment will take place in the Amsterdam UMC, location AMC in the Netherlands. DISCUSSION: The outcome of this study will function as a proof-of-concept for the development of novel chemoprevention approaches that interfere with the competition between normal and mutant ISCs. TRIAL REGISTRATION: ClinicalTrials.gov ( https://clinicaltrials.gov/ ): NCT05402891 (June 1, 2022) and the EU Clinical Trials Register: EuraCT 2022-000240-30 (January 1, 2022).


Asunto(s)
Poliposis Adenomatosa del Colon , Litio , Poliposis Adenomatosa del Colon/tratamiento farmacológico , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/prevención & control , Proteína de la Poliposis Adenomatosa del Colon/genética , Adolescente , Adulto , Ensayos Clínicos Fase II como Asunto , Genes APC , Humanos , Litio/uso terapéutico , Estudios Prospectivos , Adulto Joven
8.
Micromachines (Basel) ; 13(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35630206

RESUMEN

The cancer xenograft model in which human cancer cells are implanted in a mouse is one of the most used preclinical models to test the efficacy of novel cancer drugs. However, the model is imperfect; animal models are ethically burdened, and the imperfect efficacy predictions contribute to high clinical attrition of novel drugs. If microfluidic cancer-on-chip models could recapitulate key elements of the xenograft model, then these models could substitute the xenograft model and subsequently surpass the xenograft model by reducing variation, increasing sensitivity and scale, and adding human factors. Here, we exposed HCT116 colorectal cancer spheroids to dynamic, in vivo-like, concentrations of oxaliplatin, including a 5 day drug-free period, on-chip. Growth inhibition on-chip was comparable to existing xenograft studies. Furthermore, immunohistochemistry showed a similar response in proliferation and apoptosis markers. While small volume changes in xenografts are hard to detect, in the chip-system, we could observe a temporary growth delay. Lastly, histopathology and a pharmacodynamic model showed that the cancer spheroid-on-chip was representative of the proliferating outer part of a HCT116 xenograft, thereby capturing the major driver of the drug response of the xenograft. Hence, the cancer-on-chip model recapitulated the response of HCT116 xenografts to oxaliplatin and provided additional drug efficacy information.

9.
Trends Cancer ; 8(5): 416-425, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35153158

RESUMEN

The relationship between intestinal stem cells (ISCs) and colorectal cancer (CRC) has been a topic of intense study. Uncovering stem cell dynamics in homeostasis and following acquisition of oncogenic mutations has provided unprecedented insights into CRC initiation, and it is increasingly evident that the microenvironment plays a key role in regulating stem cell fate and functionality. Consequently, imbalances in the signaling between the niche and ISCs perturb homeostasis and promote cancer development. Furthermore, stem cell-like cells drive growth and progression of established CRCs and these cells also critically rely on microenvironmental input. Here, we highlight the importance of stem cell/niche interactions in developing and established CRC and discuss how these can be modulated to develop novel preventive and therapeutic interventions.


Asunto(s)
Neoplasias , Células Madre , Homeostasis/fisiología , Humanos , Intestinos/fisiología , Neoplasias/genética , Nicho de Células Madre , Microambiente Tumoral/genética
10.
STAR Protoc ; 3(1): 101050, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-34977689

RESUMEN

Intestinal organoid cultures are a powerful tool to study epithelial cells in vitro, as they are able to proliferate and differentiate into all cell lineages observed in vivo. Co-culturing organoids with distinct genetic backgrounds provides an excellent approach to study contact dependent and independent interactions between healthy and mutant epithelial intestinal cells. Here, we provide 2D and 3D approaches to mouse organoid co-cultures using fluorescently labeled organoids and demonstrate the analysis of these co-cultures using flow cytometry and microscopy-based approaches. For complete details on the use and execution of this profile, please refer to van Neerven et al., 2021.


Asunto(s)
Competencia Celular , Organoides , Animales , Técnicas de Cocultivo , Células Epiteliales , Intestinos , Ratones
11.
Cell Stem Cell ; 28(11): 2009-2019.e4, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34358441

RESUMEN

The tissue dynamics that govern maintenance and regeneration of the pancreas remain largely unknown. In particular, the presence and nature of a cellular hierarchy remains a topic of debate. Previous lineage tracing strategies in the pancreas relied on specific marker genes for clonal labeling, which left other populations untested and failed to account for potential widespread phenotypical plasticity. Here we employed a tracing system that depends on replication-induced clonal marks. We found that, in homeostasis, steady acinar replacement events characterize tissue dynamics, to which all acinar cells have an equal ability to contribute. Similarly, regeneration following pancreatitis was best characterized by an acinar self-replication model because no evidence of a cellular hierarchy was detected. In particular, rapid regeneration in the pancreas was found to be driven by an accelerated rate of acinar fission-like events. These results provide a comprehensive and quantitative model of cell dynamics in the exocrine pancreas.


Asunto(s)
Páncreas Exocrino , Pancreatitis , Células Acinares , Homeostasis , Humanos , Páncreas
12.
Cancers (Basel) ; 13(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209288

RESUMEN

Cell generation and renewal are essential processes to develop, maintain, and regenerate tissues. New cells can be generated from immature cell types, such as stem-like cells, or originate from more differentiated pre-existing cells that self-renew or transdifferentiate. The adult pancreas is a dormant organ with limited regeneration capacity, which complicates studying these processes. As a result, there is still discussion about the existence of stem cells in the adult pancreas. Interestingly, in contrast to the classical stem cell concept, stem cell properties seem to be plastic, and, in circumstances of injury, differentiated cells can revert back to a more immature cellular state. Importantly, deregulation of the balance between cellular proliferation and differentiation can lead to disease initiation, in particular to cancer formation. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of only ~9%. Unfortunately, metastasis formation often occurs prior to diagnosis, and most tumors are resistant to current treatment strategies. It has been proposed that a specific subpopulation of cells, i.e., cancer stem cells (CSCs), are responsible for tumor expansion, metastasis formation, and therapy resistance. Understanding the underlying mechanisms of pancreatic stem cells during homeostasis and injury might lead to new insights to understand the role of CSCs in PDAC. Therefore, in this review, we present an overview of the current literature regarding the stem cell dynamics in the pancreas during health and disease. Furthermore, we highlight the influence of the tumor microenvironment on the growth behavior of PDAC.

13.
Trends Cancer ; 7(8): 664-665, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34219052

RESUMEN

A high-fat diet (HFD) directly acts on intestinal stem cells by increasing their numbers and proliferation, resulting in an elevated risk of developing colorectal cancer (CRC). In a recent study, Mana et al. revealed that HFD-mediated intestinal tumor formation can be reduced by inhibiting fatty acid oxidation.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Neoplasias Colorrectales/etiología , Dieta Alta en Grasa/efectos adversos , Humanos , Metabolismo de los Lípidos
14.
Nature ; 594(7863): 436-441, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079128

RESUMEN

A delicate equilibrium of WNT agonists and antagonists in the intestinal stem cell (ISC) niche is critical to maintaining the ISC compartment, as it accommodates the rapid renewal of the gut lining. Disruption of this balance by mutations in the tumour suppressor gene APC, which are found in approximately 80% of all human colon cancers, leads to unrestrained activation of the WNT pathway1,2. It has previously been established that Apc-mutant cells have a competitive advantage over wild-type ISCs3. Consequently, Apc-mutant ISCs frequently outcompete all wild-type stem cells within a crypt, thereby reaching clonal fixation in the tissue and initiating cancer formation. However, whether the increased relative fitness of Apc-mutant ISCs involves only cell-intrinsic features or whether Apc mutants are actively involved in the elimination of their wild-type neighbours remains unresolved. Here we show that Apc-mutant ISCs function as bona fide supercompetitors by secreting WNT antagonists, thereby inducing differentiation of neighbouring wild-type ISCs. Lithium chloride prevented the expansion of Apc-mutant clones and the formation of adenomas by rendering wild-type ISCs insensitive to WNT antagonists through downstream activation of WNT by inhibition of GSK3ß. Our work suggests that boosting the fitness of healthy cells to limit the expansion of pre-malignant clones may be a powerful strategy to limit the formation of cancers in high-risk individuals.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Competencia Celular , Genes APC , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Mutación , Adenoma/genética , Adenoma/metabolismo , Adenoma/patología , Proteína de la Poliposis Adenomatosa del Colon/deficiencia , Animales , Diferenciación Celular/genética , Femenino , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Humanos , Neoplasias Intestinales/metabolismo , Cloruro de Litio/farmacología , Masculino , Ratones , Organoides/citología , Organoides/metabolismo , Organoides/patología , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismo
15.
Cell Death Differ ; 28(12): 3282-3296, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34117376

RESUMEN

Evasion of apoptosis is a hallmark of cancer, which is frequently mediated by upregulation of the antiapoptotic BCL-2 family proteins. In colorectal cancer (CRC), previous work has highlighted differential antiapoptotic protein dependencies determined by the stage of the disease. While intestinal stem cells (ISCs) require BCL-2 for adenoma outgrowth and survival during transformation, ISC-specific MCL1 deletion results in disturbed intestinal homeostasis, eventually contributing to tumorigenesis. Colon cancer stem cells (CSCs), however, no longer require BCL-2 and depend mainly on BCL-XL for their survival. We therefore hypothesized that a shift in antiapoptotic protein reliance occurs in ISCs as the disease progresses from normal to adenoma to carcinoma. By targeting antiapoptotic proteins with specific BH3 mimetics in organoid models of CRC progression, we found that BCL-2 is essential only during ISC transformation while MCL1 inhibition did not affect adenoma outgrowth. BCL-XL, on the other hand, was crucial for stem cell survival throughout the adenoma-to-carcinoma sequence. Furthermore, we identified that the limited window of BCL-2 reliance is a result of its downregulation by miR-17-5p, a microRNA that is upregulated upon APC-mutation driven transformation. Here we show that BCL-XL inhibition effectively impairs adenoma outgrowth in vivo and enhances the efficacy of chemotherapy. In line with this dependency, expression of BCL-XL, but not BCL-2 or MCL1, directly correlated to the outcome of chemotherapy-treated CRC patients. Our results provide insights to enable the rational use of BH3 mimetics in CRC management, particularly underlining the therapeutic potential of BCL-XL targeting mimetics in both early and late-stage disease.


Asunto(s)
Adenoma/genética , Neoplasias Colorrectales/genética , Proteína bcl-X/genética , Adenoma/mortalidad , Adenoma/patología , Animales , Apoptosis , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Análisis de Supervivencia
16.
EBioMedicine ; 66: 103303, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33773183

RESUMEN

Organs-on-chips are in vitro models in which human tissues are cultured in microfluidic compartments with a controlled, dynamic micro-environment. Specific organs-on-chips are being developed to mimic human tumors, but the validation of such 'cancer-on-chip' models for use in drug development is hampered by the complexity and variability of human tumors. An important step towards validation of cancer-on-chip technology could be to first mimic cancer xenograft models, which share multiple characteristics with human cancers but are significantly less complex. Here we review the relevant biological characteristics of a xenograft tumor and show that organ-on-chip technology is capable of mimicking many of these aspects. Actual comparisons between on-chip tumor growth and xenografts are promising but also demonstrate that further development and empirical validation is still needed. Validation of cancer-on-chip models to xenografts would not only represent an important milestone towards acceptance of cancer-on-chip technology, but could also improve drug discovery, personalized cancer medicine, and reduce animal testing.


Asunto(s)
Biomimética , Modelos Animales de Enfermedad , Dispositivos Laboratorio en un Chip , Neoplasias/patología , Animales , Biomimética/métodos , Línea Celular Tumoral , Descubrimiento de Drogas/métodos , Xenoinjertos , Humanos , Ratones , Técnicas Analíticas Microfluídicas , Neoplasias/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cancer Cell Int ; 20(1): 578, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33292279

RESUMEN

BACKGROUND: Cancer results from the accumulation of mutations leading to the acquisition of cancer promoting characteristics such as increased proliferation and resistance to cell death. In colorectal cancer, an early mutation leading to such features usually occurs in the APC or CTNNB1 genes, thereby activating Wnt signalling. However, substantial phenotypic differences between cancers originating within the same organ, such as molecular subtypes, are not fully reflected by differences in mutations. Indeed, the phenotype seems to result from a complex interplay between the cell-intrinsic features and the acquired mutations, which is difficult to disentangle when established tumours are studied. METHODS: We use a 3D in vitro organoid model to study the early phase of colorectal cancer development. From three different murine intestinal locations we grow organoids. These are transformed to resemble adenomas after Wnt activation through lentiviral transduction with a stable form of ß-Catenin. The gene expression before and after Wnt activation is compared within each intestinal origin and across the three locations using RNA sequencing. To validate and generalize our findings, we use gene expression data from patients. RESULTS: In reaction to Wnt activation we observe downregulation of location specific genes and differentiation markers. A similar effect is seen in patient data, where genes with significant differential expression between the normal left and right colon are downregulated in the cancer samples. Furthermore, the signature of Wnt target genes differs between the three intestinal locations in the organoids. The location specific Wnt signatures are dominated by genes which have been lowly expressed in the tissue of origin, and are the targets of transcription factors that are activated following enhanced Wnt signalling. CONCLUSION: We observed that the region-specific cell identity has a substantial effect on the reaction to Wnt activation in a simple intestinal adenoma model. These findings provide a way forward in resolving the distinct biology between left- and right-sided human colon cancers with potential clinical relevance.

19.
Endosc Int Open ; 7(5): E701-E707, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31073537

RESUMEN

Background and study aims Microsatellite instability accelerates colorectal cancer development in patients with Lynch syndrome (LS). Previous research showed that virtual chromoendoscopy increases detection of adenomas during colonoscopy surveillance of patients with LS. Because previous research revealed that Lynch patients have an increased vascular network in the oral mucosa, we hypothesized that increased vascularization of LS-associated adenomas is the cause of better detection with virtual chromoendoscopy. Patients and methods In this pilot study, patients with LS having a proven germline mutation were selected from two tertiary referral hospitals and non-LS patients from an outpatient colonoscopy center. Adenomas from patients with LS were exactly matched in size and histology with adenomas from non-LS patients. Initial adenoma diagnosis was confirmed by a specialist pathologist. All adenomas were stained with CD31 and adenomatous tissue was annotated by the specialist pathologist. Image analysis of CD31-positive microvessel density was conducted using FIJI software. Results Colonoscopy of 63 patients with LS and 24 non-LS patients provided 40 adenomas that could be exactly matched in size and histology. In image-analysis, the CD31-positive microvessel density (2.49 % vs. 2.47 %, P  = 0.96), the average size of CD31-positive structures (514 µm 2 vs. 523 µm 2 , P  = 0.26) nor the amount of vascular structures per mm 2 (183 vs. 176, P  = 0.50) differed between adenomas of LS patients and non-Lynch patients. Conclusion The outcomes of this pilot case-control study did not provide further insights into the mechanism of increased adenoma detection in LS patients using virtual chromoendoscopy techniques.

20.
Proc Natl Acad Sci U S A ; 116(13): 6140-6145, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850544

RESUMEN

Cancer evolution is predominantly studied by focusing on differences in the genetic characteristics of malignant cells within tumors. However, the spatiotemporal dynamics of clonal outgrowth that underlie evolutionary trajectories remain largely unresolved. Here, we sought to unravel the clonal dynamics of colorectal cancer (CRC) expansion in space and time by using a color-based clonal tracing method. This method involves lentiviral red-green-blue (RGB) marking of cell populations, which enabled us to track individual cells and their clonal outgrowth during tumor initiation and growth in a xenograft model. We found that clonal expansion largely depends on the location of a clone, as small clones reside in the center and large clones mostly drive tumor growth at the border. These dynamics are recapitulated in a computational model, which confirms that the clone position within a tumor rather than cell-intrinsic features, is crucial for clonal outgrowth. We also found that no significant clonal loss occurs during tumor growth and clonal dispersal is limited in most models. Our results imply that, in addition to molecular features of clones such as (epi-)genetic differences between cells, clone location and the geometry of tumor growth are crucial for clonal expansion. Our findings suggest that either microenvironmental signals on the tumor border or differences in physical properties within the tumor, are major contributors to explain heterogeneous clonal expansion. Thus, this study provides further insights into the dynamics of solid tumor growth and progression, as well as the origins of tumor cell heterogeneity in a relevant model system.


Asunto(s)
Neoplasias Colorrectales/patología , Animales , Linaje de la Célula , Células Clonales , Neoplasias Colorrectales/genética , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...