Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 385(6711): 898-904, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39172834

RESUMEN

At the core of molecular biology lies the intricate interplay between sequence, structure, and function. Single-molecule techniques provide in-depth dynamic insights into structure and function, but laborious assays impede functional screening of large sequence libraries. We introduce high-throughput Single-molecule Parallel Analysis for Rapid eXploration of Sequence space (SPARXS), integrating single-molecule fluorescence with next-generation sequencing. We applied SPARXS to study the sequence-dependent kinetics of the Holliday junction, a critical intermediate in homologous recombination. By examining the dynamics of millions of Holliday junctions, covering thousands of distinct sequences, we demonstrated the ability of SPARXS to uncover sequence patterns, evaluate sequence motifs, and construct thermodynamic models. SPARXS emerges as a versatile tool for untangling the mechanisms that underlie sequence-specific processes at the molecular scale.


Asunto(s)
ADN Cruciforme , Secuenciación de Nucleótidos de Alto Rendimiento , Imagen Individual de Molécula , Secuencia de Bases , ADN Cruciforme/química , Recombinación Homóloga , Cinética , Motivos de Nucleótidos , Imagen Individual de Molécula/métodos , Termodinámica
2.
Methods Mol Biol ; 2819: 535-572, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028523

RESUMEN

Genomes carry the genetic blueprint of all living organisms. Their organization requires strong condensation as well as carefully regulated accessibility to specific genes for proper functioning of their hosts. The study of the structure and dynamics of the proteins that organize the genome has benefited tremendously from the development of single-molecule force spectroscopy techniques that allow for real-time, nanometer accuracy measurements of the compaction of DNA and manipulation with pico-Newton scale forces. Magnetic tweezers, in particular, have the unique ability to complement such force spectroscopy with the control over the linking number of the DNA molecule, which plays an important role when DNA-organizing proteins form or release wraps, loops, and bends in DNA. Here, we describe all the necessary steps to prepare DNA substrates for magnetic tweezers experiments, assemble flow cells, tether DNA to a magnetic bead inside a flow cell, and manipulate and record the extension of such DNA tethers. Furthermore, we explain how mechanical parameters of nucleoprotein filaments can be extracted from the data.


Asunto(s)
ADN , Imagen Individual de Molécula , ADN/química , ADN/genética , Imagen Individual de Molécula/métodos , Microscopía de Fuerza Atómica/métodos , Magnetismo , Conformación de Ácido Nucleico , Pinzas Ópticas
3.
EMBO J ; 43(1): 87-111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177309

RESUMEN

Telomere repeat binding factor 2 (TRF2) is an essential component of the telomeres and also plays an important role in a number of other non-telomeric processes. Detailed knowledge of the binding and interaction of TRF2 with telomeric nucleosomes is limited. Here, we study the binding of TRF2 to in vitro-reconstituted kilobasepair-long human telomeric chromatin fibres using electron microscopy, single-molecule force spectroscopy and analytical ultracentrifugation sedimentation velocity. Our electron microscopy results revealed that full-length and N-terminally truncated TRF2 promote the formation of a columnar structure of the fibres with an average width and compaction larger than that induced by the addition of Mg2+, in agreement with the in vivo observations. Single-molecule force spectroscopy showed that TRF2 increases the mechanical and thermodynamic stability of the telomeric fibres when stretched with magnetic tweezers. This was in contrast to the result for fibres reconstituted on the 'Widom 601' high-affinity nucleosome positioning sequence, where minor effects on fibre stability were observed. Overall, TRF2 binding induces and stabilises columnar fibres, which may play an important role in telomere maintenance.


Asunto(s)
Cromatina , Complejo Shelterina , Proteína 2 de Unión a Repeticiones Teloméricas , Humanos , Nucleosomas , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética
4.
Nat Methods ; 20(4): 523-535, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36973549

RESUMEN

Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas , Transferencia Resonante de Energía de Fluorescencia/métodos , Reproducibilidad de los Resultados , Proteínas/química , Conformación Molecular , Laboratorios
5.
Sci Rep ; 12(1): 15558, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114220

RESUMEN

Large topologically associated domains (TADs) contain irregularly spaced nucleosome clutches, and interactions between such clutches are thought to aid the compaction of these domains. Here, we reconstituted TAD-sized chromatin fibers containing hundreds of nucleosomes on native source human and lambda-phage DNA and compared their mechanical properties at the single-molecule level with shorter '601' arrays with various nucleosome repeat lengths. Fluorescent imaging showed increased compaction upon saturation of the DNA with histones and increasing magnesium concentration. Nucleosome clusters and their structural fluctuations were visualized in confined nanochannels. Force spectroscopy revealed not only similar mechanical properties of the TAD-sized fibers as shorter fibers but also large rupture events, consistent with breaking the interactions between distant clutches of nucleosomes. Though the arrays of native human DNA, lambda-phage and '601' DNA featured minor differences in reconstitution yield and nucleosome stability, the fibers' global structural and mechanical properties were similar, including the interactions between nucleosome clutches. These single-molecule experiments quantify the mechanical forces that stabilize large TAD-sized chromatin domains consisting of disordered, dynamically interacting nucleosome clutches and their effect on the condensation of large chromatin domains.


Asunto(s)
Histonas , Nucleosomas , Cromatina , ADN/química , Histonas/química , Humanos , Magnesio
6.
Nature ; 609(7929): 1048-1055, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104563

RESUMEN

Telomeres, the ends of eukaryotic chromosomes, play pivotal parts in ageing and cancer and are targets of DNA damage and the DNA damage response1-5. Little is known about the structure of telomeric chromatin at the molecular level. Here we used negative stain electron microscopy and single-molecule magnetic tweezers to characterize 3-kbp-long telomeric chromatin fibres. We also obtained the cryogenic electron microscopy structure of the condensed telomeric tetranucleosome and its dinucleosome unit. The structure displayed close stacking of nucleosomes with a columnar arrangement, and an unusually short nucleosome repeat  length that comprised about 132 bp DNA wound in a continuous superhelix around histone octamers. This columnar structure is primarily stabilized by the H2A carboxy-terminal and histone amino-terminal tails in a synergistic manner. The columnar conformation results in exposure of the DNA helix, which may make it susceptible to both DNA damage and the DNA damage response. The conformation also exists in an alternative open state, in which one nucleosome is unstacked and flipped out, which exposes the acidic patch of the histone surface. The structural features revealed in this work suggest mechanisms by which protein factors involved in telomere maintenance can access telomeric chromatin in its compact form.


Asunto(s)
Cromatina , ADN , Histonas , Conformación Molecular , Telómero , Cromatina/química , Cromatina/genética , Cromatina/ultraestructura , ADN/química , ADN/metabolismo , ADN/ultraestructura , Daño del ADN , Histonas/química , Histonas/metabolismo , Histonas/ultraestructura , Humanos , Microscopía Electrónica , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/ultraestructura , Imagen Individual de Molécula , Telómero/química , Telómero/genética , Telómero/ultraestructura
7.
Mol Cell ; 82(10): 1788-1805, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35561688

RESUMEN

Next-generation sequencing techniques have led to a new quantitative dimension in the biological sciences. In particular, integrating sequencing techniques with biophysical tools allows sequence-dependent mechanistic studies. Using the millions of DNA clusters that are generated during sequencing to perform high-throughput binding affinity and kinetics measurements enabled the construction of energy landscapes in sequence space, uncovering relationships between sequence, structure, and function. Here, we review the approaches to perform ensemble fluorescence experiments on next-generation sequencing chips for variations of DNA, RNA, and protein sequences. As the next step, we anticipate that these fluorescence experiments will be pushed to the single-molecule level, which can directly uncover kinetics and molecular heterogeneity in an unprecedented high-throughput fashion. Molecular biophysics in sequence space, both at the ensemble and single-molecule level, leads to new mechanistic insights. The wide spectrum of applications in biology and medicine ranges from the fundamental understanding of evolutionary pathways to the development of new therapeutics.


Asunto(s)
ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Biofisica , ADN/química , ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biología Molecular , Análisis de Secuencia de ADN/métodos
8.
J Chem Phys ; 156(9): 094201, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35259901

RESUMEN

Plasmonic metallic nanoparticles are commonly used in (bio-)sensing applications because their localized surface plasmon resonance is highly sensitive to changes in the environment. Although optical detection of scattered light from single particles provides a straightforward means of detection, the two-photon luminescence (TPL) of single gold nanorods (GNRs) has the potential to increase the sensitivity due to the large anti-Stokes shift and the non-linear excitation mechanism. However, two-photon microscopy and spectroscopy are restricted in bandwidth and have been limited by the thermal stability of GNRs. Here, we used a scanning multi-focal microscope to simultaneously measure the two-photon excitation spectra of hundreds of individual GNRs with sub-nanometer accuracy. By keeping the excitation power under the melting threshold, we show that GNRs were stable in intensity and spectrum for more than 30 min, demonstrating the absence of thermal reshaping. Spectra featured a signal-to-noise ratio of >10 and a plasmon peak width of typically 30 nm. Changes in the refractive index of the medium of less than 0.04, corresponding to a change in surface plasmon resonance of 8 nm, could be readily measured and over longer periods. We used this enhanced spectral sensitivity to measure the presence of neutravidin, exploring the potential of TPL spectroscopy of single GNRs for enhanced plasmonic sensing.

9.
Dis Model Mech ; 15(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34927194

RESUMEN

Developments in single-molecule microscopy (SMM) have enabled imaging individual proteins in biological systems, focusing on the analysis of protein mobility patterns inside cultured cells. In the present study, SMM was applied in vivo, using the zebrafish embryo model. We studied dynamics of the membrane protein H-Ras, its membrane-anchoring domain, C10H-Ras, and mutants, using total internal reflection fluorescence microscopy. Our results consistently confirm the presence of fast- and slow-diffusing subpopulations of molecules, which confine to microdomains within the plasma membrane. The active mutant H-RasV12 exhibits higher diffusion rates and is confined to larger domains than the wild-type H-Ras and its inactive mutant H-RasN17. Subsequently, we demonstrate that the structure and composition of the plasma membrane have an imperative role in modulating H-Ras mobility patterns. Ultimately, we establish that differences between cells within the same embryo largely contribute to the overall data variability. Our findings agree with a model in which the cell architecture and the protein activation state determine protein mobility, underlining the importance of SMM imaging for studying factors influencing protein dynamics in an intact living organism. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Células Epidérmicas , Proteínas de la Membrana , Pez Cebra , Animales , Línea Celular , Membrana Celular/metabolismo , Difusión , Células Epidérmicas/citología , Células Epidérmicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Imagen Individual de Molécula
10.
Nucleic Acids Res ; 49(5): 2537-2551, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33589918

RESUMEN

Nucleosome-nucleosome interactions drive the folding of nucleosomal arrays into dense chromatin fibers. A better physical account of the folding of chromatin fibers is necessary to understand the role of chromatin in regulating DNA transactions. Here, we studied the unfolding pathway of regular chromatin fibers as a function of single base pair increments in linker length, using both rigid base-pair Monte Carlo simulations and single-molecule force spectroscopy. Both computational and experimental results reveal a periodic variation of the folding energies due to the limited flexibility of the linker DNA. We show that twist is more restrictive for nucleosome stacking than bend, and find the most stable stacking interactions for linker lengths of multiples of 10 bp. We analyzed nucleosomes stacking in both 1- and 2-start topologies and show that stacking preferences are determined by the length of the linker DNA. Moreover, we present evidence that the sequence of the linker DNA also modulates nucleosome stacking and that the effect of the deletion of the H4 tail depends on the linker length. Importantly, these results imply that nucleosome positioning in vivo not only affects the phasing of nucleosomes relative to DNA but also directs the higher-order structure of chromatin.


Asunto(s)
Cromatina/química , ADN/química , Nucleosomas/química , Histonas/genética , Modelos Moleculares , Método de Montecarlo , Conformación de Ácido Nucleico
11.
Nucleic Acids Res ; 49(8): 4338-4349, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33341892

RESUMEN

Many archaea express histones, which organize the genome and play a key role in gene regulation. The structure and function of archaeal histone-DNA complexes remain however largely unclear. Recent studies show formation of hypernucleosomes consisting of DNA wrapped around an 'endless' histone-protein core. However, if and how such a hypernucleosome structure assembles on a long DNA substrate and which interactions provide for its stability, remains unclear. Here, we describe micromanipulation studies of complexes of the histones HMfA and HMfB with DNA. Our experiments show hypernucleosome assembly which results from cooperative binding of histones to DNA, facilitated by weak stacking interactions between neighboring histone dimers. Furthermore, rotational force spectroscopy demonstrates that the HMfB-DNA complex has a left-handed chirality, but that torque can drive it in a right-handed conformation. The structure of the hypernucleosome thus depends on stacking interactions, torque, and force. In vivo, such modulation of the archaeal hypernucleosome structure may play an important role in transcription regulation in response to environmental changes.


Asunto(s)
Proteínas Arqueales/química , ADN de Archaea/química , Histonas/química , Methanobacteriales/química , Nucleosomas/química , Fenómenos Mecánicos , Multimerización de Proteína
12.
Nat Commun ; 11(1): 3638, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32686667

RESUMEN

Surface charge plays a fundamental role in determining the fate of a nanoparticle, and any encapsulated contents, in vivo. Herein, we describe, and visualise in real time, light-triggered switching of liposome surface charge, from neutral to cationic, in situ and in vivo (embryonic zebrafish). Prior to light activation, intravenously administered liposomes, composed of just two lipid reagents, freely circulate and successfully evade innate immune cells present in the fish. Upon in situ irradiation and surface charge switching, however, liposomes rapidly adsorb to, and are taken up by, endothelial cells and/or are phagocytosed by blood resident macrophages. Coupling complete external control of nanoparticle targeting together with the intracellular delivery of encapsulated (and membrane impermeable) cargos, these compositionally simple liposomes are proof that advanced nanoparticle function in vivo does not require increased design complexity but rather a thorough understanding of the fundamental nano-bio interactions involved.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Liposomas/química , Nanopartículas/química , Animales , Cationes/metabolismo , Liposomas/farmacología , Liposomas/uso terapéutico , Macrófagos , Membranas/metabolismo , Nanomedicina/métodos , Nanopartículas/uso terapéutico , Fagocitosis , Pez Cebra
13.
Biophys J ; 118(9): 2245-2257, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32053775

RESUMEN

Many single-molecule biophysical techniques rely on nanometric tracking of microbeads to obtain quantitative information about the mechanical properties of biomolecules such as chromatin fibers. Their three-dimensional (3D) position can be resolved by holographic analysis of the diffraction pattern in wide-field imaging. Fitting this diffraction pattern to Lorenz-Mie scattering theory yields the bead's position with nanometer accuracy in three dimensions but is computationally expensive. Real-time multiplexed bead tracking therefore requires a more efficient tracking method, such as comparison with previously measured diffraction patterns, known as look-up tables. Here, we introduce an alternative 3D phasor algorithm that provides robust bead tracking with nanometric localization accuracy in a z range of over 10 µm under nonoptimal imaging conditions. The algorithm is based on a two-dimensional cross correlation using fast Fourier transforms with computer-generated reference images, yielding a processing rate of up to 10,000 regions of interest per second. We implemented the technique in magnetic tweezers and tracked the 3D position of over 100 beads in real time on a generic CPU. The accuracy of 3D phasor tracking was extensively tested and compared to a look-up table approach using Lorenz-Mie simulations, avoiding experimental uncertainties. Its easy implementation, efficiency, and robustness can improve multiplexed biophysical bead-tracking applications, especially when high throughput is required and image artifacts are difficult to avoid.


Asunto(s)
Holografía , Imagenología Tridimensional , Algoritmos , Microesferas
14.
Elife ; 82019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31516120

RESUMEN

Single-molecule experiments reveal the dynamics of transcription through a nucleosome with single-base-pair accuracy.


Asunto(s)
Cromatina , Nucleosomas , Histonas/genética
15.
Biophys J ; 115(10): 1848-1859, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30366627

RESUMEN

The organization of chromatin in 30 nm fibers remains a topic of debate. Here, we quantify the mechanical properties of the linker DNA and evaluate the impact of these properties on chromatin fiber folding. We extended a rigid basepair DNA model to include (un)wrapping of nucleosomal DNA and (un)stacking of nucleosomes in one-start and two-start chromatin fibers. Monte Carlo simulations that mimic single-molecule force spectroscopy experiments of folded nucleosomal arrays reveal different stages of unfolding as a function of force and are largely consistent with a two-start folding for 167 and one-start folding for 197 nucleosome repeat length fibers. The major insight is that nucleosome unstacking and subsequent unwrapping is not necessary to obtain quantitative agreement with experimental force extension curves up to the overstretching plateau of folded chromatin fibers at 3-5 pN. Nucleosome stacking appears better accommodated in one-start than in two-start conformations, and we suggest that this difference can compensate the increased energy for bending the linker DNA. Overall, these simulations capture the dynamic structure of chromatin fibers while maintaining realistic physical properties of the linker DNA.


Asunto(s)
Emparejamiento Base , Cromatina/química , ADN/química , Método de Montecarlo , Fenómenos Biomecánicos , Cinética , Modelos Moleculares , Desnaturalización de Ácido Nucleico , Nucleosomas/química , Termodinámica
16.
Methods Mol Biol ; 1837: 317-349, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30109618

RESUMEN

Genomes carry the genetic blueprint of all living organisms. Their organization requires strong condensation as well as carefully regulated accessibility to specific genes for proper functioning of their hosts. The study of the structure and dynamics of the proteins that organize the genome has benefited tremendously from the development of single-molecule force spectroscopy techniques that allow for real-time, nanometer accuracy measurements of the compaction of DNA and manipulation with pico-Newton scale forces. Magnetic tweezers in particular have the unique ability to complement such force spectroscopy with the control over the linking number of the DNA molecule, which plays an important role when DNA organizing proteins form or release wraps, loops, and bends in DNA. Here, we describe all the necessary steps to prepare DNA substrates for magnetic tweezers experiments, assemble flow cells, tether DNA to magnetics bead inside flow cell, and manipulate and record the extension of such DNA tethers. Furthermore, we explain how mechanical parameters of nucleo-protein filaments can be extracted from the data.


Asunto(s)
ADN/química , Magnetismo , Imagen Individual de Molécula , Bacterias/genética , Bacterias/metabolismo , Cromatina/química , Análisis de Datos , Magnetismo/métodos , Imagen Individual de Molécula/métodos , Coloración y Etiquetado
17.
Methods Mol Biol ; 1814: 297-323, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29956240

RESUMEN

Magnetic tweezers form a unique tool to study the topology and mechanical properties of chromatin fibers. Chromatin is a complex of DNA and proteins that folds the DNA in such a way that meter-long stretches of DNA fit into the micron-sized cell nucleus. Moreover, it regulates accessibility of the genome to the cellular replication, transcription, and repair machinery. However, the structure and mechanisms that govern chromatin folding remain poorly understood, despite recent spectacular improvements in high-resolution imaging techniques. Single-molecule force spectroscopy techniques can directly measure both the extension of individual chromatin fragments with nanometer accuracy and the forces involved in the (un)folding of single chromatin fibers. Here, we report detailed methods that allow one to successfully prepare in vitro reconstituted chromatin fibers for use in magnetic tweezers-based force spectroscopy. The higher-order structure of different chromatin fibers can be inferred from fitting a statistical mechanics model to the force-extension data. These methods for quantifying chromatin folding can be extended to study many other processes involving chromatin, such as the epigenetic regulation of transcription.


Asunto(s)
Cromatina/química , Magnetismo/métodos , Pinzas Ópticas , ADN/química , Análisis de Datos , Ensayo de Cambio de Movilidad Electroforética , Microscopía de Fuerza Atómica
18.
Sci Rep ; 7(1): 16721, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196662

RESUMEN

The organization of DNA into chromatin is thought to regulate gene expression in eukaryotes. To study its structure in vitro, there is a need for techniques that can isolate specific chromosomal loci of natively assembled chromatin. Current purification methods often involve chemical cross-linking to preserve the chromatin composition. However, such cross-linking may affect the native structure. It also impedes single molecule force spectroscopy experiments, which have been instrumental to probe chromatin folding. Here we present a method for the incorporation of affinity tags, such as biotin, into native nucleoprotein fragments based on their DNA sequence, and subsequent single molecule analysis by magnetic tweezers. DNA oligos with several Locked Nucleic Acid (LNA) nucleotides are shown to selectively bind to target DNA at room temperature, mediated by a toehold end in the target, allowing for selective purification of DNA fragments. The stability of the probe-target hybrid is sufficient to withstand over 65 pN of force. We employ these probes to obtain force-extension curves of native chromatin fragments of the 18S ribosomal DNA from the yeast Saccharomyces cerevisiae. These experiments yield valuable insights in the heterogeneity in structure and composition of natively assembled chromatin at the single-molecule level.


Asunto(s)
Cromatina/metabolismo , ADN/metabolismo , Oligonucleótidos/metabolismo , Hibridación de Ácido Nucleico , ARN Ribosómico 18S/química , ARN Ribosómico 18S/metabolismo , Saccharomyces cerevisiae/genética
19.
J Biol Chem ; 292(42): 17506-17513, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28855255

RESUMEN

The eukaryotic genome is highly compacted into a protein-DNA complex called chromatin. The cell controls access of transcriptional regulators to chromosomal DNA via several mechanisms that act on chromatin-associated proteins and provide a rich spectrum of epigenetic regulation. Elucidating the mechanisms that fold chromatin fibers into higher-order structures is therefore key to understanding the epigenetic regulation of DNA accessibility. Here, using histone H4-V21C and histone H2A-E64C mutations, we employed single-molecule force spectroscopy to measure the unfolding of individual chromatin fibers that are reversibly cross-linked through the histone H4 tail. Fibers with covalently linked nucleosomes featured the same folding characteristics as fibers containing wild-type histones but exhibited increased stability against stretching forces. By stabilizing the secondary structure of chromatin, we confirmed a nucleosome repeat length (NRL)-dependent folding. Consistent with previous crystallographic and cryo-EM studies, the obtained force-extension curves on arrays with 167-bp NRLs best supported an underlying structure consisting of zig-zag, two-start fibers. For arrays with 197-bp NRLs, we previously inferred solenoidal folding, which was further corroborated by force-extension curves of the cross-linked fibers. The different unfolding pathways exhibited by these two types of arrays and reported here extend our understanding of chromatin structure and its potential roles in gene regulation. Importantly, these findings imply that chromatin compaction by nucleosome stacking protects nucleosomal DNA from external forces up to 4 piconewtons.


Asunto(s)
ADN/química , Histonas/química , Nucleosomas/química , Pliegue de Proteína , Proteínas de Xenopus/química , Animales , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Proteínas de Xenopus/metabolismo , Xenopus laevis
20.
Mol Plant ; 10(10): 1258-1273, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28893714

RESUMEN

Temperature influences the distribution, range, and phenology of plants. The key transcriptional activators of heat shock response in eukaryotes, the heat shock factors (HSFs), have undergone large-scale gene amplification in plants. While HSFs are central in heat stress responses, their role in the response to ambient temperature changes is less well understood. We show here that the warm ambient temperature transcriptome is dependent upon the HSFA1 clade of Arabidopsis HSFs, which cause a rapid and dynamic eviction of H2A.Z nucleosomes at target genes. A transcriptional cascade results in the activation of multiple downstream stress-responsive transcription factors, triggering large-scale changes to the transcriptome in response to elevated temperature. H2A.Z nucleosomes are enriched at temperature-responsive genes at non-inducible temperature, and thus likely confer inducibility of gene expression and higher responsive dynamics. We propose that the antagonistic effects of H2A.Z and HSF1 provide a mechanism to activate gene expression rapidly and precisely in response to temperature, while preventing leaky transcription in the absence of an activation signal.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Nucleosomas/metabolismo , Temperatura , Aclimatación/genética , Arabidopsis/metabolismo , Cromatina/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Calor , Regiones Promotoras Genéticas , Unión Proteica , Activación Transcripcional , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA