Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Glob Antimicrob Resist ; 30: 406-413, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35840108

RESUMEN

OBJECTIVES: Our group recently developed a new group of antimicrobial peptides termed PepBiotics, of which peptides CR-163 and CR-172 showed optimized antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus without inducing antimicrobial resistance. In this study, the antibacterial mechanism of action and the immunomodulatory activity of these two PepBiotics was explored. METHODS: RAW264.7 cells were used to determine the ability of PepBiotics to neutralize Lipopolysaccharide (LPS)-and Lipoteichoic acid (LTA)-induced activation of macrophages. Isothermal titration calorimetry and competition assays with dansyl-labeled polymyxin B determined binding characteristics to LPS and LTA. Combined bacterial killing with subsequent macrophage activation assays was performed to determine so-called 'silent killing'. Finally, flow cytometry of peptide-treated genetically engineered Escherichia coli expressing Green Fluorescent Protein (GFP) and mCherry in the cytoplasm and periplasm, respectively, further established the antimicrobial mechanism of PepBiotics. RESULTS: Both CR-163 and CR-172 were shown to have broad-spectrum activity against ESKAPE pathogens and E. coli using a membranolytic mechanism of action. PepBiotics could exothermically bind LPS/LTA and were able to replace polymyxin B. Finally, it was demonstrated that bacteria killed by PepBiotics were less prone to stimulate immune cells, contrary to gentamicin and heat-killed bacteria that still elicited a strong immune response. CONCLUSIONS: These studies highlight the multifunctional nature of the two peptide antibiotics as both broad-spectrum antimicrobial and immunomodulator. Their ability to kill bacteria and reduce unwanted subsequent immune activation is a major advantage and highlights their potential for future therapeutic use.


Asunto(s)
Antiinfecciosos , Lipopolisacáridos , Animales , Antibacterianos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Inmunidad , Ratones , Péptidos/farmacología , Polimixina B/farmacología , Células RAW 264.7
2.
Biochim Biophys Acta Gen Subj ; 1865(9): 129951, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34147544

RESUMEN

BACKGROUND: Antimicrobial peptides are considered potential alternatives to antibiotics. Here we describe the antibacterial properties of a family of novel cathelicidin-related (CR-) peptides, which we named PepBiotics, against bacteria typically present in cystic fibrosis (CF) patients. METHODS: Broth dilution assays were used to determine antibacterial activity of PepBiotics under physiological conditions, as well as development of bacterial resistance against these peptides. Toxicity was tested in mice and cell cultures while molecular interactions of PepBiotics with bacterial membrane components was determined using CD, ITC and LPS/LTA induced macrophage studies. RESULTS: A relatively small number of PepBiotics remained highly antibacterial against CF-related respiratory pathogens Pseudomonas aeruginosa and Staphylococcus aureus, at high ionic strength and low pH. Interestingly, these PepBiotics also prevented LPS/LTA induced activation of macrophages and was shown to be non-toxic to primary human nasal epithelial cells. Furthermore, both P. aeruginosa and S. aureus were unable to induce resistance against CR-163 and CR-172, two PepBiotics selected for their excellent antimicrobial and immunomodulatory properties. Toxicity studies in mice indicated that intratracheal administration of CR-163 was well tolerated in vivo. Finally, interaction of CR-163 with bacterial-type anionic membranes but not with mammalian-type (zwitterionic lipid) membranes was confirmed using ITC and 31P solid state NMR. CONCLUSIONS: PepBiotics are a promising novel class of highly active antimicrobial peptides, of which CR-163 showed the most potential for treatment of clinically relevant (CF-) pathogens in physiological conditions. GENERAL SIGNIFICANCE: These observations emphasize the therapeutic potential of PepBiotics against CF-related bacterial respiratory infections.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/química , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Inyecciones Espinales , Masculino , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Catelicidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...