Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Mater ; 30(14): 4831-4837, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30245549

RESUMEN

Nanocrystal (NC) solids are commonly prepared from nonpolar organic NC suspensions. In many cases, the capping on the NC surface is preserved and forms a barrier between the NCs. More recently, superstructures with crystalline connections between the NCs, implying the removal of the capping, have been reported, too. Here, we present large-scale uniform superstructures of attached PbSe NCs with a silicene-type honeycomb geometry, resulting from solvent evaporation under nearly reversible conditions. We also prepared multilayered silicene honeycomb structures by using larger amounts of PbSe NCs. We show that the two-dimensional silicene superstructures can be seen as a crystallographic slice from a 3-D simple cubic structure. We describe the disorder in the silicene lattices in terms of the nanocrystals position and their atomic alignment. The silicene honeycomb sheets are large enough to be used in transistors and optoelectronic devices.

2.
J Phys Chem C Nanomater Interfaces ; 122(23): 12464-12473, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29930743

RESUMEN

The realization of materials with new optoelectronic properties draws much scientific attention toward the field of nanocrystal superstructures. Low-dimensional superstructures created by interfacial assembly and oriented attachment of PbSe nanocrystals are a striking example because theory showed that PbSe sheets with a honeycomb geometry possess non-trivial flat bands and Dirac cones in the valence and conduction bands. Here, we report on the formation of one-dimensional linear and zigzag structures and two-dimensional (2D) square and honeycomb structures for the entire lead chalcogenide family: PbX (X = S, Se, Te). We observe that PbTe, with a lower bulk melting temperature and enthalpy of formation than those of PbSe, shows a higher nanocrystal surface reactivity, such that the surface must be passivated and the reaction conditions moderated to obtain reasonably ordered superstructures. The present findings constitute a step forward in the realization of a larger family of atomically coherent 2D superstructures with variable IV-VI and II-VI compositions and with electronic properties dictated by the nanogeometry.

3.
Nano Lett ; 18(6): 3675-3681, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29781269

RESUMEN

We studied the formation of supraparticles from nanocrystals confined in slowly evaporating oil droplets in an oil-in-water emulsion. The nanocrystals consist of an FeO core, a CoFe2O4 shell, and oleate capping ligands, with an overall diameter of 12.5 nm. We performed in situ small- and wide-angle X-ray scattering experiments during the entire period of solvent evaporation and colloidal crystallization. We observed a slow increase in the volume fraction of nanocrystals inside the oil droplets up to 20%, at which a sudden crystallization occurs. Our computer simulations show that crystallization at such a low volume fraction is only possible if attractive interactions between colloidal nanocrystals are taken into account in the model as well. The spherical supraparticles have a diameter of about 700 nm and consist of a few crystalline face-centered cubic domains. Nanocrystal supraparticles bear importance for magnetic and optoelectronic applications, such as color tunable biolabels, color tunable phosphors in LEDs, and miniaturized lasers.

4.
Nat Mater ; 15(12): 1248-1254, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27595349

RESUMEN

Oriented attachment of PbSe nanocubes can result in the formation of two-dimensional (2D) superstructures with long-range nanoscale and atomic order. This questions the applicability of classic models in which the superlattice grows by first forming a nucleus, followed by sequential irreversible attachment of nanocrystals, as one misaligned attachment would disrupt the 2D order beyond repair. Here, we demonstrate the formation mechanism of 2D PbSe superstructures with square geometry by using in situ grazing-incidence X-ray scattering (small angle and wide angle), ex situ electron microscopy, and Monte Carlo simulations. We observed nanocrystal adsorption at the liquid/gas interface, followed by the formation of a hexagonal nanocrystal monolayer. The hexagonal geometry transforms gradually through a pseudo-hexagonal phase into a phase with square order, driven by attractive interactions between the {100} planes perpendicular to the liquid substrate, which maximize facet-to-facet overlap. The nanocrystals then attach atomically via a necking process, resulting in 2D square superlattices.

5.
Nat Commun ; 6: 8195, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26400049

RESUMEN

Two-dimensional networks of quantum dots connected by atomic bonds have an electronic structure that is distinct from that of arrays of quantum dots coupled by ligand molecules. We prepared atomically coherent two-dimensional percolative networks of PbSe quantum dots connected via atomic bonds. Here, we show that photoexcitation leads to generation of free charges that eventually decay via trapping. The charge mobility probed with an AC electric field increases with frequency from 150 ± 15 cm(2) V(-1) s(-1) at 0.2 terahertz to 260 ± 15 cm(2) V(-1) s(-1) at 0.6 terahertz. Gated four-probe measurements yield a DC electron mobility of 13 ± 2 cm(2) V(-1) s(-1). The terahertz mobilities are much higher than for arrays of quantum dots coupled via surface ligands and are similar to the highest DC mobilities reported for PbSe nanowires. The terahertz mobility increases only slightly with temperature in the range of 15-290 K. The extent of straight segments in the two-dimensional percolative networks limits the mobility, rather than charge scattering by phonons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...