Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Today Bio ; 26: 101021, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38545261

RESUMEN

Small bioactive peptide sequences derived from extracellular matrix proteins possess the ability to interact with cell receptors. As such, these peptide additives are excellent mimics to develop materials for 3D cell culture. Two types of supramolecular modified collagen type I mimicking peptide additives are presented; UPy-GFOGER (39 amino acids), with a novel superstructure, and the more simplistic UPy-DGEA (7 amino acids). Here, we studied the impact of the conformational differences between both peptide additives, on their biological performance. Various analyzing techniques demonstrated the ability of the supramolecular UPy-GFOGER to self-assemble into short nanofibers with brush-like outer features, suggesting trimerization into a triple helix. UPy-DGEA is a short additive without a complex structure. Since, collagen type I is a major component of the human corneal stroma, primary keratocytes (PKs) are encapsulated within the functionalized hydrogels to provide insights in the induced bioactivity of both additives. Incorporation of UPy-GFOGER supported an elongated morphology and (re-)differentiation of the encapsulated PKs, while tiny round-shaped cells were observed within the hydrogels functionalized with UPy-DGEA. This difference in biological success between UPy-GFOGER and UPy-DGEA indicates the difficulty of using short peptide additives without a complex structure to mimic the complex structure of natural collagen.

2.
Adv Mater ; 33(37): e2008111, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34337776

RESUMEN

The extracellular matrix (ECM) forms through hierarchical assembly of small and larger polymeric molecules into a transient, hydrogel-like fibrous network that provides mechanical support and biochemical cues to cells. Synthetic, fibrous supramolecular networks formed via non-covalent assembly of various molecules are therefore potential candidates as synthetic mimics of the natural ECM, provided that functionalization with biochemical cues is effective. Here, combinations of slow and fast exchanging molecules that self-assemble into supramolecular fibers are employed to form transient hydrogel networks with tunable dynamic behavior. Obtained results prove that modulating the ratio between these molecules dictates the extent of dynamic behavior of the hydrogels at both the molecular and the network level, which is proposed to enable effective incorporation of cell-adhesive functionalities in these materials. Excitingly, the dynamic nature of the supramolecular components in this system can be conveniently employed to formulate multicomponent supramolecular hydrogels for easy culturing and encapsulation of single cells, spheroids, and organoids. Importantly, these findings highlight the significance of molecular design and exchange dynamics for the application of supramolecular hydrogels as synthetic ECM mimics.


Asunto(s)
Encapsulación Celular/métodos , Hidrogeles/química , Vasos Sanguíneos/citología , Adhesión Celular , Matriz Extracelular/química , Recuperación de Fluorescencia tras Fotoblanqueo , Colorantes Fluorescentes/química , Humanos , Polietilenglicoles/química , Pirimidinonas/sangre , Células Madre/citología , Células Madre/metabolismo
3.
Biomater Sci ; 9(6): 2209-2220, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33506836

RESUMEN

Bio-artificial kidneys require conveniently synthesized membranes providing signals that regulate renal epithelial cell function. Therefore, we aimed to find synthetic analogues for natural extracellular matrix (ECM) protein coatings traditionally used for epithelial cell culturing. Two biomaterial libraries, based on natural ECM-coatings and on synthetic supramolecular small molecule additives, were developed. The base material consisted of a bisurea (BU) containing polymer, providing supramolecular BU-additives to be incorporated via specific hydrogen bonding interactions. This system allows for a modular approach and therefore easy fractional factorial based screening. A natural coating on the BU-polymer material with basement membrane proteins, laminin and collagen IV, combined with catechols was shown to induce renal epithelial monolayer formation. Modification of the BU-polymer material with synthetic BU-modified ECM peptide additives did not result in monolayer formation. Unexpectedly, simple BU-catechol additives induced monolayer formation and presented similar levels of epithelial markers and apical transporter function as on the laminin, collagen IV and catechol natural coating. Importantly, when this BU-polymer material was processed into fibrous e-spun membranes the natural coating and the BU-catechol additive were shown to perfectly function. This study clearly indicates that complex natural ECM-coatings can be replaced by simple synthetic additives, and displays the potency of material libraries based on design of experiments in combination with modular, supramolecular chemistry.


Asunto(s)
Materiales Biocompatibles , Riñones Artificiales , Células Cultivadas , Células Epiteliales , Péptidos
4.
Macromol Biosci ; 20(3): e1900277, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31885206

RESUMEN

A variety of biomedical applications requires tailored membranes; fabrication through a mix-and-match approach is simple and desired. Polymers based on supramolecular bis-urea (BU) moieties are capable of modular integration through directed non-covalent stacking. Here, it is proposed that non-cell adhesive properties can be introduced in polycaprolactone-BU-based membranes by the addition of poly(ethylene glycol) (PEG)-BU during immersion precipitation membrane fabrication, while unmodified PEG is not retained in the membrane. PEG-BU addition results in denser membranes with a similar pore size compared to pristine membranes, while PEG addition induces defect formation. Infrared spectroscopy and surface hydrophobicity measurements indicate that PEG-BU is retained during membrane processing. Additionally, PEG-BU incorporation successfully leads to poor cell adhesive surfaces. No evidence is observed to indicate PEG retention. The results obtained indicate that the BU system enables intimate mixing of BU-modified polymers after processing. Collectively, the results provide the first steps toward BU-based immersion precipitated supramolecular membranes for biomedical applications.


Asunto(s)
Adhesión Celular , Ensayo de Materiales , Membranas Artificiales , Polietilenglicoles/química , Urea/química , Línea Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...