Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hemasphere ; 7(2): e824, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36741355

RESUMEN

RUNX1 familial platelet disorder (RUNX1-FPD) is a hematopoietic disorder caused by germline loss-of-function mutations in the RUNX1 gene and characterized by thrombocytopathy, thrombocytopenia, and an increased risk of developing hematologic malignancies, mostly of myeloid origin. Disease pathophysiology has remained incompletely understood, in part because of a shortage of in vivo models recapitulating the germline RUNX1 loss of function found in humans, precluding the study of potential contributions of non-hematopoietic cells to disease pathogenesis. Here, we studied mice harboring a germline hypomorphic mutation of one Runx1 allele with a loss-of-function mutation in the other Runx1 allele (Runx1 L148A/- mice), which display many hematologic characteristics found in human RUNX1-FPD patients. Runx1 L148A/- mice displayed robust and pronounced thrombocytopenia and myeloid-biased hematopoiesis, associated with an HSC intrinsic reconstitution defect in lymphopoiesis and expansion of myeloid progenitor cell pools. We demonstrate that specific deletion of Runx1 from bone marrow stromal cells in Prrx1-cre;Runx1 fl/fl mice did not recapitulate these abnormalities, indicating that the hematopoietic abnormalities are intrinsic to the hematopoietic lineage, and arguing against a driving role of the bone marrow microenvironment. In conclusion, we report a RUNX1-FPD mouse model faithfully recapitulating key characteristics of human disease. Findings do not support a driving role of ancillary, non-hematopoietic cells in the disruption of hematopoiesis under homeostatic conditions.

2.
Br J Haematol ; 200(1): 79-86, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36168923

RESUMEN

Severe congenital neutropenia (SCN) patients are prone to develop myelodysplastic syndrome (MDS) or acute myeloid leukaemia (AML). Leukaemic progression of SCN is associated with the early acquisition of CSF3R mutations in haematopoietic progenitor cells (HPCs), which truncate the colony-stimulating factor 3 receptor (CSF3R). These mutant clones may arise years before MDS/AML becomes overt. Introduction and activation of CSF3R truncation mutants in normal HPCs causes a clonally dominant myeloproliferative state in mice treated with CSF3. Paradoxically, in SCN patients receiving CSF3 therapy, clonal dominance of CSF3R mutant clones usually occurs only after the acquisition of additional mutations shortly before frank MDS or AML is diagnosed. To seek an explanation for this discrepancy, we introduced a patient-derived CSF3R-truncating mutation in ELANE-SCN and HAX1-SCN derived and control induced pluripotent stem cells and compared the CSF3 responses of HPCs generated from these lines. In contrast to CSF3R-mutant control HPCs, CSF3R-mutant HPCs from SCN patients do not show increased proliferation but display elevated levels of inflammatory signalling. Thus, activation of the truncated CSF3R in SCN-HPCs does not evoke clonal outgrowth but causes a sustained pro-inflammatory state, which has ramifications for how these CSF3R mutants contribute to the leukaemic transformation of SCN.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Ratones , Animales , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Leucemia Mieloide Aguda/diagnóstico , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/complicaciones
3.
Nat Commun ; 13(1): 7657, 2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496394

RESUMEN

Innate and adaptive immune cells participate in the homeostatic regulation of hematopoietic stem cells (HSCs). Here, we interrogate the contribution of myeloid cells, the most abundant cell type in the mammalian bone marrow, in a clinically relevant mouse model of neutropenia. Long-term genetic depletion of neutrophils and eosinophils results in activation of multipotent progenitors but preservation of HSCs. Depletion of myeloid cells abrogates HSC expansion, loss of serial repopulation and lymphoid reconstitution capacity and remodeling of HSC niches, features previously associated with hematopoietic aging. This is associated with mitigation of interferon signaling in both HSCs and their niches via reduction of NK cell number and activation. These data implicate myeloid cells in the functional decline of hematopoiesis, associated with activation of interferon signaling via a putative neutrophil-NK cell axis. Innate immunity may thus come at the cost of system deterioration through enhanced chronic inflammatory signaling to stem cells and their niches.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Ratones , Animales , Células Madre Hematopoyéticas/metabolismo , Células Mieloides , Médula Ósea/fisiología , Interferones/metabolismo , Diferenciación Celular , Mamíferos
4.
Blood Adv ; 5(13): 2687-2700, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34170285

RESUMEN

The differentiation of hematopoietic stem cells (HSCs) is tightly controlled to ensure a proper balance between myeloid and lymphoid cell output. GATA2 is a pivotal hematopoietic transcription factor required for generation and maintenance of HSCs. GATA2 is expressed throughout development, but because of early embryonic lethality in mice, its role during adult hematopoiesis is incompletely understood. Zebrafish contains 2 orthologs of GATA2: Gata2a and Gata2b, which are expressed in different cell types. We show that the mammalian functions of GATA2 are split between these orthologs. Gata2b-deficient zebrafish have a reduction in embryonic definitive hematopoietic stem and progenitor cell (HSPC) numbers, but are viable. This allows us to uniquely study the role of GATA2 in adult hematopoiesis. gata2b mutants have impaired myeloid lineage differentiation. Interestingly, this defect arises not in granulocyte-monocyte progenitors, but in HSPCs. Gata2b-deficient HSPCs showed impaired progression of the myeloid transcriptional program, concomitant with increased coexpression of lymphoid genes. This resulted in a decrease in myeloid-programmed progenitors and a relative increase in lymphoid-programmed progenitors. This shift in the lineage output could function as an escape mechanism to avoid a block in lineage differentiation. Our study helps to deconstruct the functions of GATA2 during hematopoiesis and shows that lineage differentiation flows toward a lymphoid lineage in the absence of Gata2b.


Asunto(s)
Células Madre Hematopoyéticas , Pez Cebra , Animales , Diferenciación Celular , Factor de Transcripción GATA2/genética , Hematopoyesis , Ratones , Monocitos , Proteínas de Pez Cebra
5.
Blood Adv ; 5(3): 775-786, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33560392

RESUMEN

Mutations in ELANE cause severe congenital neutropenia (SCN), but how they affect neutrophil production and contribute to leukemia predisposition is unknown. Neutropenia is alleviated by CSF3 (granulocyte colony-stimulating factor) therapy in most cases, but dose requirements vary between patients. Here, we show that CD34+CD45+ hematopoietic progenitor cells (HPCs) derived from induced pluripotent stem cell lines from patients with SCN that have mutations in ELANE (n = 2) or HAX1 (n = 1) display elevated levels of reactive oxygen species (ROS) relative to normal iPSC-derived HPCs. In patients with ELANE mutations causing misfolding of the neutrophil elastase (NE) protein, HPCs contained elevated numbers of promyelocyte leukemia protein nuclear bodies, a hallmark of acute oxidative stress. This was confirmed in primary bone marrow cells from 3 additional patients with ELANE-mutant SCN. Apart from responding to elevated ROS levels, PML controlled the metabolic state of these ELANE-mutant HPCs as well as the expression of ELANE, suggestive of a feed-forward mechanism of disease development. Both PML deletion and correction of the ELANE mutation restored CSF3 responses of these ELANE-mutant HPCs. These findings suggest that PML plays a crucial role in the disease course of ELANE-SCN characterized by NE misfolding, with potential implications for CSF3 therapy.


Asunto(s)
Elastasa de Leucocito/genética , Neutropenia , Proteínas Adaptadoras Transductoras de Señales , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Factor Estimulante de Colonias de Granulocitos , Humanos , Mutación , Neutropenia/congénito , Neutropenia/genética
6.
Cell Rep Med ; 1(5): 100074, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-33205068

RESUMEN

Severe congenital neutropenia (SCN) patients treated with CSF3/G-CSF to alleviate neutropenia frequently develop acute myeloid leukemia (AML). A common pattern of leukemic transformation involves the appearance of hematopoietic clones with CSF3 receptor (CSF3R) mutations in the neutropenic phase, followed by mutations in RUNX1 before AML becomes overt. To investigate how the combination of CSF3 therapy and CSF3R and RUNX1 mutations contributes to AML development, we make use of mouse models, SCN-derived induced pluripotent stem cells (iPSCs), and SCN and SCN-AML patient samples. CSF3 provokes a hyper-proliferative state in CSF3R/RUNX1 mutant hematopoietic progenitors but does not cause overt AML. Intriguingly, an additional acquired driver mutation in Cxxc4 causes elevated CXXC4 and reduced TET2 protein levels in murine AML samples. Expression of multiple pro-inflammatory pathways is elevated in mouse AML and human SCN-AML, suggesting that inflammation driven by downregulation of TET2 activity is a critical step in the malignant transformation of SCN.


Asunto(s)
Transformación Celular Neoplásica/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/patología , Proteínas de Unión al ADN/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación/genética , Neutropenia/congénito , Factores de Transcripción/genética , Animales , Línea Celular , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células HEK293 , Humanos , Inflamación/genética , Inflamación/patología , Células K562 , Ratones , Neutropenia/genética , Neutropenia/patología , Transducción de Señal/genética
8.
Cell Stem Cell ; 20(6): 785-800.e8, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28457748

RESUMEN

Bone marrow fibrosis (BMF) develops in various hematological and non-hematological conditions and is a central pathological feature of myelofibrosis. Effective cell-targeted therapeutics are needed, but the cellular origin of BMF remains elusive. Here, we show using genetic fate tracing in two murine models of BMF that Gli1+ mesenchymal stromal cells (MSCs) are recruited from the endosteal and perivascular niche to become fibrosis-driving myofibroblasts in the bone marrow. Genetic ablation of Gli1+ cells abolished BMF and rescued bone marrow failure. Pharmacological targeting of Gli proteins with GANT61 inhibited Gli1+ cell expansion and myofibroblast differentiation and attenuated fibrosis severity. The same pathway is also active in human BMF, and Gli1 expression in BMF significantly correlates with the severity of the disease. In addition, GANT61 treatment reduced the myofibroblastic phenotype of human MSCs isolated from patients with BMF, suggesting that targeting of Gli proteins could be a relevant therapeutic strategy.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Miofibroblastos/metabolismo , Mielofibrosis Primaria/tratamiento farmacológico , Piridinas/farmacología , Pirimidinas/farmacología , Proteína con Dedos de Zinc GLI1/antagonistas & inhibidores , Animales , Diferenciación Celular/genética , Humanos , Células Madre Mesenquimatosas/patología , Ratones , Ratones Transgénicos , Miofibroblastos/patología , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/metabolismo , Mielofibrosis Primaria/patología , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
10.
Cell Stem Cell ; 19(5): 613-627, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27666011

RESUMEN

Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system, but the underlying molecular mechanisms and relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the pre-leukemic disorder Shwachman-Diamond syndrome (SDS) induces mitochondrial dysfunction, oxidative stress, and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the SDS mouse model and a range of human pre-leukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome (MDS), the principal leukemia predisposition syndrome. Collectively, our findings identify mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as a targetable determinant of disease outcome in human pre-leukemia.


Asunto(s)
Daño del ADN , Progresión de la Enfermedad , Células Madre Hematopoyéticas/patología , Inflamación/patología , Leucemia/patología , Células Madre Mesenquimatosas/patología , Lesiones Precancerosas/patología , Animales , Enfermedades de la Médula Ósea/patología , Huesos/anomalías , Huesos/patología , Reparación del ADN , Insuficiencia Pancreática Exocrina/patología , Eliminación de Gen , Células Madre Hematopoyéticas/metabolismo , Humanos , Integrasas/metabolismo , Leucemia/metabolismo , Lipomatosis/patología , Células Madre Mesenquimatosas/metabolismo , Ratones , Mitocondrias/metabolismo , Estrés Oxidativo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Lesiones Precancerosas/metabolismo , Proteínas/metabolismo , Factores de Riesgo , Proteínas S100/genética , Proteínas S100/metabolismo , Síndrome de Shwachman-Diamond , Transducción de Señal , Factor de Transcripción Sp7 , Nicho de Células Madre , Receptores Toll-Like/metabolismo , Factores de Transcripción/metabolismo , Resultado del Tratamiento , Proteína p53 Supresora de Tumor/metabolismo
11.
Blood ; 127(24): 2991-3003, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-26966090

RESUMEN

Neutrophilic differentiation is dependent on CCAAT enhancer-binding protein α (C/EBPα), a transcription factor expressed in multiple organs including the bone marrow. Using functional genomic technologies in combination with clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 genome editing and in vivo mouse modeling, we show that CEBPA is located in a 170-kb topological-associated domain that contains 14 potential enhancers. Of these, 1 enhancer located +42 kb from CEBPA is active and engages with the CEBPA promoter in myeloid cells only. Germ line deletion of the homologous enhancer in mice in vivo reduces Cebpa levels exclusively in hematopoietic stem cells (HSCs) and myeloid-primed progenitor cells leading to severe defects in the granulocytic lineage, without affecting any other Cebpa-expressing organ studied. The enhancer-deleted progenitor cells lose their myeloid transcription program and are blocked in differentiation. Deletion of the enhancer also causes loss of HSC maintenance. We conclude that a single +42-kb enhancer is essential for CEBPA expression in myeloid cells only.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Elementos de Facilitación Genéticos , Células Mieloides/fisiología , Mielopoyesis/genética , Neutrófilos/fisiología , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Línea Celular Tumoral , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Células HL-60 , Células HeLa , Células Hep G2 , Humanos , Células Jurkat , Células K562 , Ratones , Ratones Noqueados , Células U937
12.
Haematologica ; 100(10): 1285-93, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26185170

RESUMEN

Shwachman-Diamond syndrome is a congenital bone marrow failure disorder characterized by debilitating neutropenia. The disease is associated with loss-of-function mutations in the SBDS gene, implicated in ribosome biogenesis, but the cellular and molecular events driving cell specific phenotypes in ribosomopathies remain poorly defined. Here, we established what is to our knowledge the first mammalian model of neutropenia in Shwachman-Diamond syndrome through targeted downregulation of Sbds in hematopoietic stem and progenitor cells expressing the myeloid transcription factor CCAAT/enhancer binding protein α (Cebpa). Sbds deficiency in the myeloid lineage specifically affected myelocytes and their downstream progeny while, unexpectedly, it was well tolerated by rapidly cycling hematopoietic progenitor cells. Molecular insights provided by massive parallel sequencing supported cellular observations of impaired cell cycle exit and formation of secondary granules associated with the defect of myeloid lineage progression in myelocytes. Mechanistically, Sbds deficiency activated the p53 tumor suppressor pathway and induced apoptosis in these cells. Collectively, the data reveal a previously unanticipated, selective dependency of myelocytes and downstream progeny, but not rapidly cycling progenitors, on this ubiquitous ribosome biogenesis protein, thus providing a cellular basis for the understanding of myeloid lineage biased defects in Shwachman-Diamond syndrome.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Células Madre Hematopoyéticas/metabolismo , Células Mieloides/citología , Células Mieloides/metabolismo , Neutropenia/genética , Proteínas/genética , Animales , Apoptosis/genética , Enfermedades de la Médula Ósea/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Ciclo Celular/genética , Modelos Animales de Enfermedad , Insuficiencia Pancreática Exocrina/genética , Eliminación de Gen , Hematopoyesis/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Lipomatosis/genética , Ratones , Ratones Noqueados , Síndrome de Shwachman-Diamond , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
13.
Blood ; 125(25): 3937-48, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-25778535

RESUMEN

Interstrand crosslinks (ICLs) are toxic DNA lesions that cause severe genomic damage during replication, especially in Fanconi anemia pathway-deficient cells. This results in progressive bone marrow failure and predisposes to acute myeloid leukemia (AML). The molecular mechanisms responsible for these defects are largely unknown. Using Ercc1-deficient mice, we show that Trp53 is responsible for ICL-induced bone marrow failure and that loss of Trp53 is leukemogenic in this model. In addition, Ercc1-deficient myeloid progenitors gain elevated levels of miR-139-3p and miR-199a-3p with age. These microRNAs exert opposite effects on hematopoiesis. Ectopic expression of miR-139-3p strongly inhibited proliferation of myeloid progenitors, whereas inhibition of miR-139-3p activity restored defective proliferation of Ercc1-deficient progenitors. Conversely, the inhibition of miR-199a-3p functions aggravated the myeloid proliferation defect in the Ercc1-deficient model, whereas its enforced expression enhanced proliferation of progenitors. Importantly, miR-199a-3p caused AML in a pre-leukemic mouse model, supporting its role as an onco-microRNA. Target genes include HuR for miR-139-3p and Prdx6, Runx1, and Suz12 for miR-199a-3p. The latter genes have previously been implicated as tumor suppressors in de novo and secondary AML. These findings show that, in addition to TRP53-controlled mechanisms, miR-139-3p and miR-199a-3p are involved in the defective hematopoietic function of ICL-repair deficient myeloid progenitors.


Asunto(s)
Transformación Celular Neoplásica/genética , Células Madre Hematopoyéticas/patología , Leucemia/genética , MicroARNs/genética , Animales , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Reparación del ADN/genética , Proteínas de Unión al ADN/deficiencia , Modelos Animales de Enfermedad , Endonucleasas/deficiencia , Células Madre Hematopoyéticas/metabolismo , Leucemia/metabolismo , Leucemia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Anemia ; 2012: 783068, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22701168

RESUMEN

The endonuclease complex Ercc1/Xpf is involved in interstrand crosslink repair and functions downstream of the Fanconi pathway. Loss of Ercc1 causes hematopoietic defects similar to those seen in Fanconi Anemia. Ercc1(-/-) mice die 3-4 weeks after birth, which prevents long-term follow up of the hematopoietic compartment. We used alternative Ercc1 mouse models to examine the effect of low or absent Ercc1 activity on hematopoiesis. Tie2-Cre-driven deletion of a floxed Ercc1 allele was efficient (>80%) in fetal liver hematopoietic cells. Hematopoietic stem and progenitor cells (HSPCs) with a deleted allele were maintained in mice up to 1 year of age when harboring a wt allele, but were progressively outcompeted when the deleted allele was combined with a knockout allele. Mice with a minimal Ercc1 activity expressed by 1 or 2 hypomorphic Ercc1 alleles have an extended life expectancy, which allows analysis of HSPCs at 10 and 20 weeks of age. The HSPC compartment was affected in all Ercc1-deficient models. Actively proliferating multipotent progenitors were most affected as were myeloid and erythroid clonogenic progenitors. In conclusion, lack of Ercc1 results in a severe competitive disadvantage of HSPCs and is most deleterious in proliferating progenitor cells.

15.
Am J Gastroenterol ; 104(11): 2673-80, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19638963

RESUMEN

OBJECTIVES: Surveillance of patients with Barrett's esophagus (BE) aims at early detection and treatment of neoplastic changes, particularly esophageal adenocarcinoma (EAC). The histological evaluation of biopsy samples has its limitations, and biomarkers may improve early identification of BE patients at risk for progression to EAC. The aim of this study was to determine the predictive value of p53, Ki67, and aneuploidy as markers of neoplastic progression in BE. METHODS: A total of 27 BE patients with histologically proven progression to high-grade dysplasia (HGD) or EAC (cases) and 27 BE patients without progression (controls) were selected and matched for age, gender, and duration of follow-up. Dysplasia grade was determined in 212 biopsy samples obtained during surveillance endoscopies from cases and in 231 biopsy samples collected from controls. DNA ploidy status was determined by flow cytometry, whereas Ki67 and p53 expression was determined by immunohistochemistry. Hazard ratios (HRs) were calculated by Cox regression adjusted for potentially confounding variables. RESULTS: A univariate analysis showed that low-grade dysplasia (LGD) increased the risk of developing HGD/EAC compared with no dysplasia (HR 3.6; 95% confidence interval (CI): 1.6 - 8.1). Aneuploidy (HR 3.5; 95% CI: 1.3-9.4), strong Ki67 overexpression (HR 5.2; 95% CI: 1.5-17.6), and moderate p53 overexpression (HR 6.5; 95% CI: 2.5-17.1) were also associated with an increased risk of developing HGD/EAC, independent of the histological result. A multivariable analysis showed that in the presence of LGD, p53 overexpression, and to a lesser extent, Ki67 overexpression remained important risk factors for neoplastic progression, whereas aneuploidy was no longer predictive. CONCLUSIONS: p53 overexpression and, to a lesser extent, Ki67 overexpression could predict neoplastic progression in BE irrespective of the histological result. These markers may be useful for identifying patients at an increased risk of developing EAC, either alone or used as a panel.


Asunto(s)
Adenocarcinoma/patología , Esófago de Barrett/patología , Neoplasias Esofágicas/patología , Antígeno Ki-67/metabolismo , Lesiones Precancerosas/patología , Proteína p53 Supresora de Tumor/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adulto , Anciano , Análisis de Varianza , Aneuploidia , Esófago de Barrett/genética , Esófago de Barrett/metabolismo , Biomarcadores de Tumor/análisis , Biopsia con Aguja , Estudios de Casos y Controles , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Esofagoscopía/métodos , Femenino , Citometría de Flujo , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Hiperplasia/genética , Hiperplasia/patología , Inmunohistoquímica , Antígeno Ki-67/genética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Probabilidad , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Medición de Riesgo , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA