Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 28(2): 191-201.e8, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33238157

RESUMEN

Functional analysis of lysine 27-linked ubiquitin chains (K27Ub) is difficult due to the inability to make them through enzymatic methods and due to a lack of model tools and substrates. Here we generate a series of ubiquitin (Ub) tools to study how the deubiquitinase UCHL3 responds to K27Ub chains in comparison to lysine 63-linked chains and mono-Ub. From a crystal structure of a complex between UCHL3 and synthetic K27Ub2, we unexpectedly discover that free K27Ub2 and K27Ub2-conjugated substrates are natural inhibitors of UCHL3. Using our Ub tools to profile UCHL3's activity, we generate a quantitative kinetic model of the inhibitory mechanism and we find that K27Ub2 can inhibit UCHL3 covalently, by binding to its catalytic cysteine, and allosterically, by locking its catalytic loop tightly in place. Based on this inhibition mechanism, we propose that UCHL3 and K27Ub chains likely sense and regulate each other in cells.


Asunto(s)
Ubiquitina Tiolesterasa/metabolismo , Ubiquitinas/metabolismo , Regulación Alostérica , Cristalografía por Rayos X , Humanos , Cinética , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/química , Ubiquitinación , Ubiquitinas/química
2.
Front Chem ; 7: 921, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32039147

RESUMEN

Ubiquitination is a process in which a protein is modified by the covalent attachment of the C-terminal carboxylic acid of ubiquitin (Ub) to the ε-amine of lysine or N-terminal methionine residue of a substrate protein or another Ub molecule. Each of the seven internal lysine residues and the N-terminal methionine residue of Ub can be linked to the C-terminus of another Ub moiety to form 8 distinct Ub linkages and the resulting differences in linkage types elicit different Ub signaling pathways. Cellular responses are triggered when proteins containing ubiquitin-binding domains (UBDs) recognize and bind to specific polyUb linkage types. To get more insight into the differences between polyUb chains, all of the seven lysine-linked di-ubiquitin molecules (diUbs) were prepared and used as a model to study their structural conformations in solution using NMR spectroscopy. We report the synthesis of diUb molecules, fully 15N-labeled on the distal (N-terminal) Ub moiety and revealed their structural orientation with respect to the proximal Ub. As expected, the diUb molecules exist in different conformations in solution, with multiple conformations known to exist for K6-, K48-, and K63-linked diUb molecules. These multiple conformations allow structural flexibility in binding with UBDs thereby inducing unique responses. One of the well-known but poorly understood UBD-Ub interaction is the recognition of K6 polyubiquitin by the ubiquitin-associated (UBA) domain of UBXN1 in the BRCA-mediated DNA repair pathway. Using our synthetic 15N-labeled diUbs, we establish here how a C-terminally extended UBA domain of UBXN1 confers specificity to K6 diUb while the non-extended version of the domain does not show any linkage preference. We show that the two distinct conformations of K6 diUb that exist in solution converge into a single conformation upon binding to this extended form of the UBA domain of the UBXN1 protein. It is likely that more of such extended UBA domains exist in nature and can contribute to linkage-specificity in Ub signaling. The isotopically labeled diUb compounds described here and the use of NMR to study their interactions with relevant partner molecules will help accelerate our understanding of Ub signaling pathways.

3.
Mol Cell ; 65(5): 941-955.e8, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28190767

RESUMEN

Intracellular signaling via the covalent attachment of different ubiquitin linkages to protein substrates is fundamental to many cellular processes. Although linkage-selective ubiquitin interactors have been studied on a case-by-case basis, proteome-wide analyses have not been conducted yet. Here, we present ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), a quantitative interaction proteomics method that makes use of chemically synthesized diubiquitin to enrich and identify ubiquitin linkage interactors from crude cell lysates. UbIA-MS reveals linkage-selective diubiquitin interactions in multiple cell types. For example, we identify TAB2 and TAB3 as novel K6 diubiquitin interactors and characterize UCHL3 as a K27-linkage selective interactor that regulates K27 polyubiquitin chain formation in cells. Additionally, we show a class of monoubiquitin and K6 diubiquitin interactors whose binding is induced by DNA damage. We expect that our proteome-wide diubiquitin interaction landscape and established workflows will have broad applications in the ongoing efforts to decipher the complex language of ubiquitin signaling.


Asunto(s)
Espectrometría de Masas , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteómica/métodos , Transducción de Señal , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación , Animales , Sitios de Unión , Biología Computacional , Cisteína Endopeptidasas/metabolismo , Bases de Datos de Proteínas , Células Madre Embrionarias/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Ratones , Células-Madre Neurales/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ubiquitina Tiolesterasa , Neoplasias del Cuello Uterino/metabolismo , Flujo de Trabajo
4.
Chembiochem ; 17(9): 816-20, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-26996281

RESUMEN

Deubiquitinating enzymes (DUBs) are proteases that fulfill crucial roles in the ubiquitin (Ub) system, by deconjugation of Ub from its targets and disassembly of polyUb chains. The specificity of a DUB towards one of the polyUb chain linkages largely determines the ultimate signaling function. We present a novel set of diubiquitin FRET probes, comprising all seven isopeptide linkages, for the absolute quantification of chain cleavage specificity of DUBs by means of Michaelis-Menten kinetics. Each probe is equipped with a FRET pair consisting of Rhodamine110 and tetramethylrhodamine to allow the fully synthetic preparation of the probes by SPPS and NCL. Our synthetic strategy includes the introduction of N,N'-Boc-protected 5-carboxyrhodamine as a convenient building block in peptide chemistry. We demonstrate the value of our probes by quantifying the linkage specificities of a panel of nine DUBs in a high-throughput manner.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Ubiquitina/metabolismo , Cromatografía Líquida de Alta Presión , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Cinética , Ubiquitinación
5.
PLoS One ; 6(9): e23620, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21949683

RESUMEN

Retinoic acid receptor (RAR) signaling is important for regulating transcriptional activity of genes involved in growth, differentiation, metabolism and reproduction. Defects in RAR signaling have been implicated in cancer. TEL, a member of the ETS family of transcription factors, is a DNA-binding transcriptional repressor. Here, we identify TEL as a transcriptional repressor of RAR signaling by its direct binding to both RAR and its dimerisation partner, the retinoid x receptor (RXR) in a ligand-independent fashion. TEL is found in two isoforms, created by the use of an alternative startcodon at amino acid 43. Although both isoforms bind to RAR and RXR in vitro and in vivo, the shorter form of TEL represses RAR signaling much more efficiently. Binding studies revealed that TEL binds closely to the DNA binding domain of RAR and that both Helix Loop Helix (HLH) and DNA binding domains of TEL are mandatory for interaction. We have shown that repression by TEL does not involve recruitment of histone deacetylases and suggest that polycomb group proteins participate in the process.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas c-ets/metabolismo , Receptores de Ácido Retinoico/metabolismo , Proteínas Represoras/metabolismo , Receptor alfa X Retinoide/metabolismo , Empalme Alternativo , Sitios de Unión/genética , Unión Competitiva , Western Blotting , Línea Celular Tumoral , Secuencias Hélice-Giro-Hélice/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Inmunoprecipitación , Luciferasas/genética , Luciferasas/metabolismo , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-ets/genética , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/genética , Proteínas Represoras/genética , Elementos de Respuesta/genética , Receptor alfa de Ácido Retinoico , Receptor alfa X Retinoide/química , Receptor alfa X Retinoide/genética , Activación Transcripcional/efectos de los fármacos , Proteína ETS de Variante de Translocación 6
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA