Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 659, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919641

RESUMEN

BACKGROUND: As an important vegetable crop, cultivated lettuce is grown worldwide and a great variety of agronomic traits have been preserved within germplasm collections. The mechanisms underlying these phenotypic variations remain to be elucidated in association with sequence variations. Compared with single nucleotide polymorphisms, structural variations (SVs) that have more impacts on gene functions remain largely uncharacterized in the lettuce genome. RESULTS: Here, we produced a comprehensive SV set for 333 wild and cultivated lettuce accessions. Comparison of SV frequencies showed that the SVs prevalent in L. sativa affected the genes enriched in carbohydrate derivative catabolic and secondary metabolic processes. Genome-wide association analysis of seven agronomic traits uncovered potentially causal SVs associated with seed coat color and leaf anthocyanin content. CONCLUSION: Our work characterized a great abundance of SVs in the lettuce genome, and provides a valuable genomic resource for future lettuce breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Lactuca , Lactuca/genética , Genoma de Planta , Fitomejoramiento , Fenotipo
2.
Front Plant Sci ; 14: 1244467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37877086

RESUMEN

Rapeseed is one of the most important agricultural crops and is used in many ways. Due to the advancing climate crisis, the yield potential of rapeseed is increasingly impaired. In addition to changing environmental conditions, the expansion of cultivated areas also favours the infestation of rapeseed with various pests and pathogens. This results in the need for continuous further development of rapeseed varieties. To this end, the potential of the rapeseed gene pool should be exploited, as the various species included in it contain promising resistance alleles against pests and pathogens. In general, the biodiversity of crops and their wild relatives is increasingly endangered. In order to conserve them and to provide impulses for breeding activities as well, strategies for the conservation of plant genetic resources are necessary. In this study, we investigated to what extent the different species of the rapeseed gene pool are conserved in European genebanks and what gaps exist. In addition, a niche modelling approach was used to investigate how the natural distribution ranges of these species are expected to change by the end of the century, assuming different climate change scenarios. It was found that most species of the rapeseed gene pool are significantly underrepresented in European genebanks, especially regarding representation of the natural distribution areas. The situation is exacerbated by the fact that the natural distributions are expected to change, in some cases significantly, as a result of ongoing climate change. It is therefore necessary to further develop strategies to prevent the loss of wild relatives of rapeseed. Based on the results of the study, as a first step we have proposed a priority list of species that should be targeted for collecting in order to conserve the biodiversity of the rapeseed gene pool in the long term.

3.
G3 (Bethesda) ; 13(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37740775

RESUMEN

Lettuce (Lactuca sativa L.) is a leafy vegetable crop with ongoing breeding efforts related to quality, resilience, and innovative production systems. To breed resilient and resistant lettuce in the future, valuable genetic variation found in close relatives could be further exploited. Lactuca virosa (2x = 2n = 18), a wild relative assigned to the tertiary lettuce gene pool, has a much larger genome (3.7 Gbp) than Lactuca sativa (2.5 Gbp). It has been used in interspecific crosses and is a donor to modern crisphead lettuce cultivars. Here, we present a de novo reference assembly of L. virosa with high continuity and complete gene space. This assembly facilitated comparisons to the genome of L. sativa and to that of the wild species L. saligna, a representative of the secondary lettuce gene pool. To assess the diversity in gene content, we classified the genes of the 3 Lactuca species as core, accessory, and unique. In addition, we identified 3 interspecific chromosomal inversions compared to L. sativa, which each may cause recombination suppression and thus hamper future introgression breeding. Using 3-way comparisons in both reference-based and reference-free manners, we show that the proliferation of long-terminal repeat elements has driven the genome expansion of L. virosa. Further, we performed a genome-wide comparison of immune genes, nucleotide-binding leucine-rich repeat, and receptor-like kinases among Lactuca spp. and indicated the evolutionary patterns and mechanisms behind their expansions. These genome analyses greatly facilitate the understanding of genetic variation in L. virosa, which is beneficial for the breeding of improved lettuce varieties.


Asunto(s)
Lactuca , Fitomejoramiento , Lactuca/genética , Genes de Plantas
4.
Front Plant Sci ; 14: 1252777, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662148

RESUMEN

Single primer enrichment technology (SPET) is a novel high-throughput genotyping method based on short-read sequencing of specific genomic regions harboring polymorphisms. SPET provides an efficient and reproducible method for genotyping target loci, overcoming the limits associated with other reduced representation library sequencing methods that are based on a random sampling of genomic loci. The possibility to sequence regions surrounding a target SNP allows the discovery of thousands of closely linked, novel SNPs. In this work, we report the design and application of the first SPET panel in lettuce, consisting of 41,547 probes spanning the whole genome and designed to target both coding (~96%) and intergenic (~4%) regions. A total of 81,531 SNPs were surveyed in 160 lettuce accessions originating from a total of 10 countries in Europe, America, and Asia and representing 10 horticultural types. Model ancestry population structure clearly separated the cultivated accessions (Lactuca sativa) from accessions of its presumed wild progenitor (L. serriola), revealing a total of six genetic subgroups that reflected a differentiation based on cultivar typology. Phylogenetic relationships and principal component analysis revealed a clustering of butterhead types and a general differentiation between germplasm originating from Western and Eastern Europe. To determine the potentiality of SPET for gene discovery, we performed genome-wide association analysis for main agricultural traits in L. sativa using six models (GLM naive, MLM, MLMM, CMLM, FarmCPU, and BLINK) to compare their strength and power for association detection. Robust associations were detected for seed color on chromosome 7 at 50 Mbp. Colocalization of association signals was found for outer leaf color and leaf anthocyanin content on chromosome 9 at 152 Mbp and on chromosome 5 at 86 Mbp. The association for bolting time was detected with the GLM, BLINK, and FarmCPU models on chromosome 7 at 164 Mbp. Associations were detected in chromosomal regions previously reported to harbor candidate genes for these traits, thus confirming the effectiveness of SPET for GWAS. Our findings illustrated the strength of SPET for discovering thousands of variable sites toward the dissection of the genomic diversity of germplasm collections, thus allowing a better characterization of lettuce collections.

5.
Plant J ; 115(1): 108-126, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36987839

RESUMEN

Lactuca saligna L. is a wild relative of cultivated lettuce (Lactuca sativa L.), with which it is partially interfertile. Hybrid progeny suffer from hybrid incompatibility (HI), resulting in reduced fertility and distorted transmission ratios. Lactuca saligna displays broad-spectrum resistance against lettuce downy mildew caused by Bremia lactucae Regel and is considered a non-host species. This phenomenon of resistance in L. saligna is called non-host resistance (NHR). One possible mechanism behind this NHR is through the plant-pathogen interaction triggered by pathogen recognition receptors, including nucleotide-binding leucine-rich repeat (NLR) proteins and receptor-like kinases (RLKs). We report a chromosome-level genome assembly of L. saligna (accession CGN05327), leading to the identification of two large paracentric inversions (>50 Mb) between L. saligna and L. sativa. Genome-wide searches delineated the major resistance clusters as regions enriched in NLRs and RLKs. Three of the enriched regions co-locate with previously identified NHR intervals. RNA-seq analysis of Bremia-infected lettuce identified several differentially expressed RLKs in NHR regions. Three tandem wall-associated kinase-encoding genes (WAKs) in the NHR8 interval display particularly high expression changes at an early stage of infection. We propose RLKs as strong candidates for determinants of the NHR phenotype of L. saligna.


Asunto(s)
Lactuca , Oomicetos , Lactuca/genética , Genoma , Fenotipo , Enfermedades de las Plantas/genética
6.
BMC Bioinformatics ; 22(1): 173, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789577

RESUMEN

BACKGROUND: To address the need for easy and reliable species classification in plant genetic resources collections, we assessed the potential of five classifiers (Random Forest, Neighbour-Joining, 1-Nearest Neighbour, a conservative variety of 3-Nearest Neighbours and Naive Bayes) We investigated the effects of the number of accessions per species and misclassification rate on classification success, and validated theirs generic value results with three complete datasets. RESULTS: We found the conservative variety of 3-Nearest Neighbours to be the most reliable classifier when varying species representation and misclassification rate. Through the analysis of the three complete datasets, this finding showed generic value. Additionally, we present various options for marker selection for classification taks such as these. CONCLUSIONS: Large-scale genomic data are increasingly being produced for genetic resources collections. These data are useful to address species classification issues regarding crop wild relatives, and improve genebank documentation. Implementation of a classification method that can improve the quality of bad datasets without gold standard training data is considered an innovative and efficient method to improve gene bank documentation.


Asunto(s)
Genómica , Plantas , Teorema de Bayes , Análisis por Conglomerados , Plantas/genética
7.
Nat Genet ; 53(5): 752-760, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33846635

RESUMEN

Lettuce (Lactuca sativa) is an important vegetable crop worldwide. Cultivated lettuce is believed to be domesticated from L. serriola; however, its origins and domestication history remain to be elucidated. Here, we sequenced a total of 445 Lactuca accessions, including major lettuce crop types and wild relative species, and generated a comprehensive map of lettuce genome variations. In-depth analyses of population structure and demography revealed that lettuce was first domesticated near the Caucasus, which was marked by loss of seed shattering. We also identified the genetic architecture of other domestication traits and wild introgressions in major resistance clusters in the lettuce genome. This study provides valuable genomic resources for crop breeding and sheds light on the domestication history of cultivated lettuce.


Asunto(s)
Domesticación , Ecotipo , Genoma de Planta , Lactuca/genética , Fitomejoramiento , Análisis de Secuencia de ADN , Sitios Genéticos , Variación Genética , Genética de Población , Humanos , Familia de Multigenes , Filogenia , Carácter Cuantitativo Heredable , Selección Genética
8.
Conserv Physiol ; 6(1): coy033, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977565

RESUMEN

Genebanks aim to optimize their storage conditions in order to postpone seed ageing as long as possible. As most genebanks have a relatively short life history, empirical data about seed longevity during ex situ storage are almost absent. Based on seed characteristics, theoretical predictions indicate that cereal seeds can be stored without substantial loss of viability for time periods exceeding 100 years, even under temperatures of a few degrees above zero. Here we present the results of a germination study in wheat and barley, comparing genebank seed samples maintained at different temperatures for 23-33 years. Wheat and barley seed samples stored at -20°C showed a mean germination of 94% and 90%, respectively, indicating no loss of the initial viability determined for the accessions prior to introduction in the collection. Seed samples maintained at 4°C showed a mean germination of 62% for wheat and 75% for barley. In addition to the observed loss of viability, the 4°C samples also showed a loss in vigour as the time period to reach their final germination was about twice as long compared to the -20°C samples. A subset of the wheat accessions tested in 2011 were retested in 2017, showing further reduction in mean germination to 35% for the 4°C samples, while the -20°C samples remained stable at 95%. Several 4°C samples were even close to a complete loss of viability. Considering that wheat and barley are generally regarded as good maintainers, the rapid loss of seed viability observed in the present study indicates that the ex situ seed storage of genetic resources at 4°C should be treated with caution by genebanks, particularly when used for long-term conservation.

9.
Metabolomics ; 14(11): 146, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30830450

RESUMEN

INTRODUCTION: Lettuce (Lactuca sativa L.) is generally not specifically acknowledged for its taste and nutritional value, while its cultivation suffers from limited resistance against several pests and diseases. Such key traits are known to be largely dependent on the ability of varieties to produce specific phytochemicals. OBJECTIVES: We aimed to identify promising genetic resources for the improvement of phytochemical composition of lettuce varieties. METHODS: Phytochemical variation was investigated using 150 Lactuca genebank accessions, comprising a core set of the lettuce gene pool, and resulting data were related to available phenotypic information. RESULTS: A hierarchical cluster analysis of the variation in relative abundance of 2026 phytochemicals, revealed by untargeted metabolic profiling, strongly resembled the known lettuce gene pool structure, indicating that the observed variation was to a large extent genetically determined. Many phytochemicals appeared species-specific, of which several are generally related to traits that are associated with plant health or nutritional value. For a large number of phytochemicals the relative abundance was either positively or negatively correlated with available phenotypic data on resistances against pests and diseases, indicating their potential role in plant resistance. Particularly the more primitive lettuces and the closely related wild relatives showed high levels of (poly)phenols and vitamin C, thus representing potential genetic resources for improving nutritional traits in modern crop types. CONCLUSION: Our large-scale analysis of phytochemical variation is unprecedented in lettuce and demonstrated the ample availability of suitable genetic resources for the development of improved lettuce varieties with higher nutritional quality and more sustainable production.


Asunto(s)
Pool de Genes , Variación Genética , Lactuca/genética , Metaboloma , Fitomejoramiento/métodos , Lactuca/metabolismo
10.
Theor Appl Genet ; 120(6): 1241-52, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20054521

RESUMEN

In recent years, an increasing number of papers has been published on the genetic diversity trends in crop cultivars released in the last century using a variety of molecular techniques. No clear general trends in diversity have emerged from these studies. Meta analytical techniques, using a study weight adapted for use with diversity indices, were applied to analyze these studies. In the meta analysis, 44 published papers were used, addressing diversity trends in released crop varieties in the twentieth century for eight different field crops, wheat being the most represented. The meta analysis demonstrated that overall in the long run no substantial reduction in the regional diversity of crop varieties released by plant breeders has taken place. A significant reduction of 6% in diversity in the 1960s as compared with the diversity in the 1950s was observed. Indications are that after the 1960s and 1970s breeders have been able to again increase the diversity in released varieties. Thus, a gradual narrowing of the genetic base of the varieties released by breeders could not be observed. Separate analyses for wheat and the group of other field crops and separate analyses on the basis of regions all showed similar trends in diversity.


Asunto(s)
Productos Agrícolas/genética , Productos Agrícolas/historia , Variación Genética , Intervalos de Confianza , Historia del Siglo XX , Triticum/genética
11.
Cell Mol Biol Lett ; 7(2B): 737-44, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12378233

RESUMEN

Possibilities for using molecular markers to improve genebank efficiency are increasingly present thanks to developments in genebanks and developments in molecular genetics. These possibilities relate to all aspects of genebank management: acquisition, maintenance, characterisation and utilisation. However, two pitfalls should be avoided. The first lies in the neutrality of the most generally used markers, making them less suitable for optimising genetic diversity. The second is related to the considerable costs involved in using molecular markers. In many cases an economical analysis will have to decide if the markers can routinely be used in genebank operations. Some examples of model studies and applications of molecular markers in genebank operations will be presented, in which both genetic and economic aspects will be illustrated briefly. These examples involved existing genebank collections of wild lettuce, cabbage and wild potato.


Asunto(s)
Bases de Datos Genéticas , Marcadores Genéticos , Plantas Comestibles/genética , Brassica/genética , Sistemas de Administración de Bases de Datos , Variación Genética , Lactuca/genética , Modelos Genéticos , Regeneración/genética , Solanum tuberosum/genética
12.
Evolution ; 53(5): 1354-1365, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28565542

RESUMEN

Inbreeding depression may be caused by (partially) recessive or overdominant gene action. The relative evolutionary importance of these two modes has been debated; the former mode is emphasized in the "dominance hypothesis," the latter in the "overdominance hypothesis." We analyzed the genetic basis of inbreeding depression in the self-incompatible herb Arabis petraea (L.) Lam.: In the selfed progeny of twelve parental plants, we studied the proportion of chlorophyll-deficient seedlings, the genotypic distributions of marker genes, and associations of marker genotypes with viability and quantitative traits. Early components of fitness were examined by scoring seed size, germination time, and early growth rate and by observing the proportion of chlorophyll-deficient seedlings. Later components of fitness, flowering, and root and aboveground biomass were also measured. Marker genotypes of young seedlings were scored for 11 enzyme loci and three microsatellite markers. We found a high proportion (about 70%) of families with chlorophyll-deficient seedlings, indicating a high mutational load. We found six significant deviations from 1:2:1 ratio at marker loci of 60 tests in seedlings, with three of these significant at the experimentwide level. Deviations from the expected ratio were assumed to be due to linked viability loci. A graphical and a Bayesian method were used to distinguish between the overdominance and dominance hypotheses. Most of the deviant segregation ratios suggested overdominance instead of recessivity of the deleterious allele. Neither the early (seed size, germination time, or early growth trait) nor the late quantitative traits (flowering, and root and aboveground biomass) showed significant linkage to markers at the experimentwide level. Presence of significant associations between markers and early viability, but lack thereof for quantitative traits expressed late, suggests either that there may be relatively low inbreeding depression in later life stages or that individual quantitative trait loci may have smaller effects than loci contributing to early viability.

13.
Evolution ; 48(4): 996-1008, 1994 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28564467

RESUMEN

If, because of genetic erosion, the level of homozygosity in small populations is high, additional selfing will result in small reductions of fitness. In addition, in small populations with a long inbreeding history selection may have purged the population of its genetic load. Therefore, a positive relationship between population size (or level of genetic variation) and level of additional inbreeding depression, here referred to as inbreeding load, may be expected. In a previous study on the rare and threatened perennial Salvia pratensis, a positive correlation between population size and level of allozyme variation has been demonstrated. In the present study, the inbreeding load in six populations of varying size and allozyme variation was investigated. In the greenhouse, significant inbreeding load in mean seed weight, proportion of germination, plant size, regenerative capacity, and survival was demonstrated. In a field experiment with the two largest and the two smallest populations, survival of selfed progeny was 16% to 63% lower than survival of outcrossed progeny. In addition, survival of outcrossed progeny was, with the exception of the largest population, lower (16% to 37%) than of hybrid progeny, resulting from crosses between populations. Effects on plant size were qualitatively similar to the effects on survival, but these effects were variable in time because of differential survival of larger individuals. In all populations the total inbreeding load, that is, the effects on size and survival multiplicated, increased in time. It was demonstrated that inbreeding load in different characters may be independent. At no time and for no character was inbreeding load or the heterosis effect correlated to the mean number of alleles per locus, indicating that allozyme variation is not representative for variation at fitness loci in these populations. Combined with results of previous investigations, these results suggest that the small populations are in an early phase of the genetic erosion process. In this phase, allozyme variation, which is supposed to be (nearly) neutral, has been affected by genetic erosion but the selectively nonneutral variation is only slightly affected. These results stress the need for detailed information about the inbreeding history of small populations. The relative performance of selfed progeny was lowest in all populations, in the greenhouse as well as in the field, and inbreeding depression could still influence the extinction probabilities of the small populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...