Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Insect Sci ; 53: 100950, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35868610

RESUMEN

Artificial light at night (ALAN) is markedly changing the night-time environment with many studies showing single-species responses. Exposure to ALAN can lead to population declines that should have consequences for the functioning and stability of ecological communities. Here, we summarise current knowledge on how insect communities are affected by ALAN. Based on reported effects of ALAN on the interactions between species, and what has been demonstrated for similar effects in other contexts, we argue that direct effects of ALAN on a few species can potentially propagate through the network of species interactions to have widespread effects in ecological communities. This can lead to a shift in community structure and simplified communities. We discuss the diversity of ALAN as a pressure and highlight major gaps in the research field. In particular, we conclude that landscape level impacts on populations and communities are understudied.


Asunto(s)
Contaminación Lumínica , Iluminación , Animales , Biota , Insectos
2.
Sci Total Environ ; 831: 154893, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35364173

RESUMEN

Artificial light at night (ALAN) has become a profound form of global anthropogenic environmental change differing in from natural light regimes in intensity, duration, distribution and spectra. It is clear that ALAN impacts individual organisms, however, population level effects, particularly of spectral changes, remain poorly understood. Here we exposed experimental multigenerational aphid-parasitoid communities in the field to seven different light spectra at night ranging from 385 to 630 nm and compared responses to a natural day-night light regime. We found that while aphid population growth was initially unaffected by ALAN, parasitoid efficiency declined under most ALAN spectra, leading to reduced top-down control and higher aphid densities. These results differ from those previously found for white light, showing a strong impact on species' daytime performance. This highlights the importance of ALAN spectra when considering their environmental impact. ALAN can have large impacts on the wider ecological community by influencing diurnal species.


Asunto(s)
Áfidos , Cadena Alimentaria , Animales , Áfidos/fisiología , Ecosistema , Insectos , Luz , Contaminación Lumínica
3.
People Nat (Hoboken) ; 3(5): 990-1013, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34909607

RESUMEN

As the COVID-19 pandemic continues to affect societies across the world, the ongoing economic and social disruptions are likely to present fundamental challenges for current and future biodiversity conservation.We review the literature for outcomes of past major societal, political, economic and zoonotic perturbations on biodiversity conservation, and demonstrate the complex implications of perturbation events upon conservation efforts. Building on the review findings, we use six in-depth case studies and the emerging literature to identify positive and negative outcomes of the COVID-19 pandemic, known and anticipated, for biodiversity conservation efforts around the world.A number of similarities exist between the current pandemic and past perturbations, with experiences highlighting that the pandemic-induced declines in conservation revenue and capacity, livelihood and trade disruptions are likely to have long-lasting and negative implications for biodiversity and conservation efforts.Yet, the COVID-19 pandemic also brought about a global pause in human movement that is unique in recent history, and may yet foster long-lasting behavioural and societal changes, presenting opportunities to strengthen and advance conservation efforts in the wake of the pandemic. Enhanced collaborations and partnerships at the local level, cross-sectoral engagement, local investment and leadership will all enhance the resilience of conservation efforts in the face of future perturbations. Other actions aimed at enhancing resilience will require fundamental institutional change and extensive government and public engagement and support if they are to be realised.The pandemic has highlighted the inherent vulnerabilities in the social and economic models upon which many conservation efforts are based. In so doing, it presents an opportunity to reconsider the status quo for conservation, and promotes behaviours and actions that are resilient to future perturbation. A free Plain Language Summary can be found within the Supporting Information of this article.

4.
J Anim Ecol ; 89(11): 2508-2516, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32858779

RESUMEN

Many organisms are experiencing changing daily light regimes due to latitudinal range shifts driven by climate change and increased artificial light at night (ALAN). Activity patterns are often driven by light cycles, which will have important consequences for species interactions. We tested whether longer photoperiods lead to higher parasitism rates by a day-active parasitoid on its host using a laboratory experiment in which we independently varied daylength and the presence of ALAN. We then tested whether reduced nighttime temperature tempers the effect of ALAN. We found that parasitism rate increased with daylength, with ALAN intensifying this effect only when the temperature was not reduced at night. The impact of ALAN was more pronounced under short daylength. Increased parasitoid activity was not compensated for by reduced life span, indicating that increased daylength leads to an increase in total parasitism effects on fitness. To test the significance of increased parasitism rate for population dynamics, we developed a host-parasitoid model. The results of the model predicted an increase in time-to-equilibrium with increased daylength and, crucially, a threshold daylength above which interactions are unstable, leading to local extinctions. Here we demonstrate that ALAN impact interacts with daylength and temperature by changing the interaction strength between a common day-active consumer species and its host in a predictable way. Our results further suggest that range expansion or ALAN-induced changes in light regimes experienced by insects and their natural enemies will result in unstable dynamics beyond key tipping points in daylength.


Asunto(s)
Cambio Climático , Fotoperiodo , Animales , Insectos , Luz , Dinámica Poblacional , Estaciones del Año
5.
Biodivers Data J ; (5): e8049, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28325971

RESUMEN

BACKGROUND: The British and Irish checklist of Cynipoidea is revised, considerably updating the last complete checklist published in 1978. Disregarding uncertain identifications, 220 species are now known from Britain and Ireland, comprising 91 Cynipidae (including two established non-natives), 127 Figitidae and two Ibaliidae. NEW INFORMATION: One replacement name is proposed, Kleidotoma thomsoni Forshage, for the secondary homonym Kleidotoma tetratoma Thomson, 1861 (nec K. tetratoma (Hartig, 1841)).

6.
Ecol Evol ; 6(12): 4041-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27516862

RESUMEN

The presence of nonprey or nonhosts is known to reduce the strength of consumer- resource interactions by increasing the consumer's effort needed to find its resource. These interference effects can have a stabilizing effect on consumer-resource dynamics, but have also been invoked to explain parasitoid extinctions. To understand how nonhosts affect parasitoids, we manipulated the density and diversity of nonhost aphids using experimental host-parasitoid communities and tested how this affects parasitation efficiency of two aphid parasitoid species. To further study the behavioral response of parasitoids to nonhosts, we tested for changes in parasitoid time allocation in relation to their host-finding strategies. The proportion of successful attacks (attack rate) in both parasitoid species was reduced by the presence of nonhosts. The parasitoid Aphidius megourae was strongly affected by increasing nonhost diversity with the attack rate dropping from 0.39 without nonhosts to 0.05 with high diversity of nonhosts, while Lysiphlebus fabarum responded less strongly, but in a more pronounced way to an increase in nonhost density. Our experiments further showed that increasing nonhost diversity caused host searching and attacking activity levels to fall in A. megourae, but not in L. fabarum, and that A. megourae changed its behavior after a period of time in the presence of nonhosts by increasing its time spent resting. This study shows that nonhost density and diversity in the environment are crucial determinants for the strength of consumer-resource interactions. Their impact upon a consumer's efficiency strongly depends on its host/prey finding strategy as demonstrated by the different responses for the two parasitoid species. We discuss that these trait-mediated indirect interactions between host and nonhost species are important for community stability, acting either stabilizing or destabilizing depending on the level of nonhost density or diversity present.

7.
Ecol Lett ; 14(11): 1170-81, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21951949

RESUMEN

Interactions among species drive the ecological and evolutionary processes in ecological communities. These interactions are effectively key components of biodiversity. Studies that use a network approach to study the structure and dynamics of communities of interacting species have revealed many patterns and associated processes. Historically these studies were restricted to trophic interactions, although network approaches are now used to study a wide range of interactions, including for example the reproductive mutualisms. However, each interaction type remains studied largely in isolation from others. Merging the various interaction types within a single integrative framework is necessary if we want to further our understanding of the ecological and evolutionary dynamics of communities. Dividing the networks up is a methodological convenience as in the field the networks occur together in space and time and will be linked by shared species. Herein, we outline a conceptual framework for studying networks composed of more than one type of interaction, highlighting key questions and research areas that would benefit from their study.


Asunto(s)
Biodiversidad , Ecología , Modelos Biológicos , Animales , Aves/parasitología , Herbivoria , Plantas
8.
Biol Lett ; 7(3): 387-91, 2011 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-21247941

RESUMEN

Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore-natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid-parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited.


Asunto(s)
Áfidos/fisiología , Cadena Alimentaria , Plantas Modificadas Genéticamente/parasitología , Triticum/parasitología , Avispas/fisiología , Animales , Áfidos/parasitología , Interacciones Huésped-Parásitos , Plantas Modificadas Genéticamente/efectos adversos , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...