Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1325558, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38328418

RESUMEN

Introduction: Tumor microenvironments are immunosuppressive due to progressive accumulation of mutations in cancer cells that can drive expression of a range of inhibitory ligands and cytokines, and recruitment of immunomodulatory cells, including myeloid-derived suppressor cells (MDSC), tumor-associated macrophages, and regulatory T cells (Tregs). Methods: To reverse this immunosuppression, we engineered mesogenic Newcastle disease virus (NDV) to express immunological checkpoint inhibitors anti-cytotoxic T lymphocyte antigen-4 and soluble programmed death protein-1. Results: Intratumoral administration of recombinant NDV (rNDV) to mice bearing intradermal B16-F10 melanomas or subcutaneous CT26LacZ colon carcinomas led to significant changes in the tumor-infiltrating lymphocyte profiles. Vectorizing immunological checkpoint inhibitors in NDV increased activation of intratumoral natural killer cells and cytotoxic T cells and decreased Tregs and MDSCs, suggesting induction of a pro-inflammatory state with greater infiltration of activated CD8+ T cells. These notable changes translated to higher ratios of activated effector/suppressor tumor-infiltrating lymphocytes in both cancer models, which is a promising prognostic marker. Whereas all rNDV-treated groups showed evidence of tumor regression and increased survival in the CT26LacZ and B16-F10, only treatment with NDV expressing immunological checkpoint blockades led to complete responses compared to tumors treated with NDV only. Discussion: These data demonstrated that NDV expressing immunological checkpoint inhibitors could reverse the immunosuppressive state of tumor microenvironments and enhance tumor-specific T cell responses.

2.
Mol Ther Oncolytics ; 31: 100748, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38075247

RESUMEN

Immunotherapies revive host immune responses against tumors by stimulating innate and adaptive immune effector cells with antitumor functions. Thus, detailed studies of immunological cell phenotypes and functions within the tumor microenvironment (TME) following immunotherapy treatments is critical to identifying the determinants of therapeutic success, optimizing treatment regimens, and driving curative outcomes. Oncolytic viruses such as Orf virus (OrfV) are multifunctional biologics that preferentially infect and kill cancer cells while simultaneously causing inflammation that drives anticancer immune responses. Here, we describe the immunological impact of OrfV on the ascites TME in a preclinical model of advanced-stage epithelial ovarian cancer. OrfV promoted the infiltration of several immune effector cells with increased expression of activation markers and effector cytokines into the ascites TME, which correlated with reduced ascites tumor burden and improved survival. The kinetics of the immune response and change in tumor burden following OrfV therapy revealed an optimal re-administration time to sustain antitumor immunity, further extending survival. The data presented highlight the importance of investigating immune response kinetics following immunotherapy and demonstrate that detailed kinetic profiling of immune responses can reveal novel insights into mechanisms of action that can guide the development of more effective therapies.

3.
Res Sq ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38045348

RESUMEN

Although immune checkpoint inhibition (ICI) has produced profound survival benefits in a broad variety of tumors, a proportion of patients do not respond. Treatment failure is in part due to immune suppressive tumor microenvironments (TME), which is particularly true of hepatocellular carcinoma (HCC). Since oncolytic viruses (OV) can generate a highly immune-infiltrated, inflammatory TME, we developed a vesicular stomatitis virus expressing interferon-ß (VSV-IFNß) as a viro-immunotherapy against HCC. Since HCC standard of care atezolizumab/bevacizumab incorporates ICI, we tested the hypothesis that pro-inflammatory VSV-IFNß would recruit, prime, and activate anti-tumor T cells, whose activity anti-PD-L1 ICI would potentiate. However, in a partially anti-PD-L1-responsive model of HCC, addition of VSV-IFNß abolished anti-PD-L1 therapy. Cytometry by Time of Flight showed that VSV-IFNß expanded dominant anti-viral effector CD8 T cells with concomitant, relative disappearance of anti-tumor T cell populations which are the target of anti-PD-L1. However, by expressing a range of HCC tumor antigens within VSV, the potent anti-viral response became amalgamated with an anti-tumor T cell response generating highly significant cures compared to anti-PD-L1 ICI alone. Our data provide a cautionary message for the use of highly immunogenic viruses as tumor-specific immune-therapeutics by showing that dominant anti-viral T cell responses can inhibit sub-dominant anti-tumor T cell responses. However, by chimerizing anti-viral and anti-tumor T cell responses through encoding tumor antigens within the virus, oncolytic virotherapy can be purposed for very effective immune driven tumor clearance and can generate anti-tumor T cell populations upon which immune checkpoint blockade can effectively work.

4.
Mol Ther ; 31(12): 3457-3477, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37805711

RESUMEN

Surfactant protein B (SP-B) deficiency is a rare genetic disease that causes fatal respiratory failure within the first year of life. Currently, the only corrective treatment is lung transplantation. Here, we co-transduced the murine lung with adeno-associated virus 6.2FF (AAV6.2FF) vectors encoding a SaCas9-guide RNA nuclease or donor template to mediate insertion of promoterless reporter genes or the (murine) Sftpb gene in frame with the endogenous surfactant protein C (SP-C) gene, without disrupting SP-C expression. Intranasal administration of 3 × 1011 vg donor template and 1 × 1011 vg nuclease consistently edited approximately 6% of lung epithelial cells. Frequency of gene insertion increased in a dose-dependent manner, reaching 20%-25% editing efficiency with the highest donor template and nuclease doses tested. We next evaluated whether this promoterless gene editing platform could extend survival in the conditional SP-B knockout mouse model. Administration of 1 × 1012 vg SP-B-donor template and 5 × 1011 vg nuclease significantly extended median survival (p = 0.0034) from 5 days in the untreated off doxycycline group to 16 days in the donor AAV and nuclease group, with one gene-edited mouse living 243 days off doxycycline. This AAV6.2FF-based gene editing platform has the potential to correct SP-B deficiency, as well as other disorders of alveolar type II cells.


Asunto(s)
Doxiciclina , Edición Génica , Ratones , Animales , Dependovirus/genética , Vectores Genéticos/genética , ARN Guía de Sistemas CRISPR-Cas , Pulmón/metabolismo , Tensoactivos/metabolismo , Sistemas CRISPR-Cas
5.
Front Immunol ; 13: 1038340, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466867

RESUMEN

Novel immunotherapies continue to be developed and tested for application against a plethora of diseases. The clinical translation of immunotherapies requires an understanding of their mechanisms. The contributions of antibodies in driving long-term responses following immunotherapies continue to be revealed given their diverse effector functions. Developing an in-depth understanding of the role of antibodies in treatment efficacy is required to optimize immunotherapies and improve the chance of successfully translating them into the clinic. However, analyses of antibody responses can be challenging in the context of antigen-agnostic immunotherapies, particularly in the context of cancers that lack pre-defined target antigens. As such, robust methods are needed to evaluate the capacity of a given immunotherapy to induce beneficial antibody responses, and to identify any therapy-limiting antibodies. We previously developed a comprehensive method for detecting antibody responses induced by antigen-agnostic immunotherapies for application in pre-clinical models of vaccinology and cancer therapy. Here, we extend this method to a high-throughput, flow cytometry-based assay able to identify and quantify isotype-specific virus- and tumor-associated antibody responses induced by immunotherapies using small sample volumes with rapid speed and high sensitivity. This method provides a valuable and flexible protocol for investigating antibody responses induced by immunotherapies, which researchers can use to expand their analyses and optimize their own treatment regimens.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Citometría de Flujo , Anticuerpos , Neoplasias/terapia , Bioensayo
6.
Cells ; 11(18)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36139433

RESUMEN

Neutrophils are innate leukocytes with diverse effector functions that allow them to respond to pathogens rapidly. Accumulating evidence has highlighted these cells' complex roles in the host's response to viral infections and tumor progression. Oncolytic virotherapy is emerging as a promising treatment modality in the armamentarium of cancer therapeutics. Oncolytic viruses preferentially kill cancer cells and stimulate tumor-associated inflammation, resulting in tumor regression. Assessing the activity of individual effector cell subsets following oncolytic virotherapy is important in identifying their contribution to antitumor immunity. In this study, we investigated the role of neutrophils in oncolytic Orf-virus-mediated immunotherapy in a murine model of pulmonary melanoma metastases. The systemic administration of the Orf virus stimulated a dramatic increase in the number of leukocytes in circulation and within the tumor microenvironment, most of which were neutrophils. Analysis of tumor-burdened lungs shortly after therapy revealed significant numbers of phenotypically immature neutrophils, with the enhanced expression of molecules affiliated with activation, migration, and cytotoxicity. Neutrophils stimulated by Orf virus therapy were directly tumoricidal through tumor necrosis factor-α-mediated effects and were required for optimal antitumor efficacy following Orf virus therapy. Taken together, these data reveal neutrophils as a crucial innate effector to consider when investigating oncolytic virotherapy.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Virus del Orf , Animales , Humanos , Inmunoterapia/métodos , Ratones , Neoplasias/patología , Neutrófilos/patología , Viroterapia Oncolítica/métodos , Virus Oncolíticos/fisiología , Microambiente Tumoral , Factor de Necrosis Tumoral alfa
7.
Sci Transl Med ; 14(640): eabn2231, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35417192

RESUMEN

Oncolytic viruses (OVs) encoding a variety of transgenes have been evaluated as therapeutic tools to increase the efficacy of chimeric antigen receptor (CAR)-modified T cells in the solid tumor microenvironment (TME). Here, using systemically delivered OVs and CAR T cells in immunocompetent mouse models, we have defined a mechanism by which OVs can potentiate CAR T cell efficacy against solid tumor models of melanoma and glioma. We show that stimulation of the native T cell receptor (TCR) with viral or virally encoded epitopes gives rise to enhanced proliferation, CAR-directed antitumor function, and distinct memory phenotypes. In vivo expansion of dual-specific (DS) CAR T cells was leveraged by in vitro preloading with oncolytic vesicular stomatitis virus (VSV) or reovirus, allowing for a further in vivo expansion and reactivation of T cells by homologous boosting. This treatment led to prolonged survival of mice with subcutaneous melanoma and intracranial glioma tumors. Human CD19 CAR T cells could also be expanded in vitro with TCR reactivity against viral or virally encoded antigens and was associated with greater CAR-directed cytokine production. Our data highlight the utility of combining OV and CAR T cell therapy and show that stimulation of the native TCR can be exploited to enhance CAR T cell activity and efficacy in mice.


Asunto(s)
Glioma , Melanoma , Viroterapia Oncolítica , Virus Oncolíticos , Receptores Quiméricos de Antígenos , Animales , Glioma/terapia , Inmunoterapia Adoptiva , Melanoma/terapia , Ratones , Virus Oncolíticos/fisiología , Receptores de Antígenos de Linfocitos T , Linfocitos T , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Immunother Cancer ; 10(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296558

RESUMEN

BACKGROUND: Novel therapies are needed to improve outcomes for women diagnosed with ovarian cancer. Oncolytic viruses are multifunctional immunotherapeutic biologics that preferentially infect cancer cells and stimulate inflammation with the potential to generate antitumor immunity. Herein we describe Parapoxvirus ovis (Orf virus (OrfV)), an oncolytic poxvirus, as a viral immunotherapy for ovarian cancer. METHODS: The immunotherapeutic potential of OrfV was tested in the ID8 orthotopic mouse model of end-stage epithelial ovarian carcinoma. Immune cell profiling, impact on secondary lesion development and survival were evaluated in OrfV-treated mice as well as in Batf3 knockout, mice depleted of specific immune cell subsets and in mice where the primary tumor was removed. Finally, we interrogated gene expression datasets from primary human ovarian tumors from the International Cancer Genome Consortium database to determine whether the interplay we observed between natural killer (NK) cells, classical type 1 dendritic cells (cDC1s) and T cells exists and influences outcomes in human ovarian cancer. RESULTS: OrfV was an effective monotherapy in a murine model of advanced-stage epithelial ovarian cancer. OrfV intervention relied on NK cells, which when depleted abrogated antitumor CD8+ T-cell responses. OrfV therapy was shown to require cDC1s in experiments with BATF3 knockout mice, which do not have mature cDC1s. Furthermore, cDC1s governed antitumor NK and T-cell responses to mediate antitumor efficacy following OrfV. Primary tumor removal, a common treatment option in human patients, was effectively combined with OrfV for optimal therapeutic outcome. Analysis of human RNA sequencing datasets revealed that cDC1s correlate with NK cells in human ovarian cancer and that intratumoral NK cells correlate positively with survival. CONCLUSIONS: The data herein support the translational potential of OrfV as an NK stimulating immunotherapeutic for the treatment of advanced-stage ovarian cancer.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Virus del Orf , Neoplasias Ováricas , Animales , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Células Asesinas Naturales , Concesión de Licencias , Ratones , Virus del Orf/genética , Virus del Orf/metabolismo , Ovinos
9.
Biomedicines ; 10(2)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35203573

RESUMEN

Epithelial ovarian cancer is the deadliest gynecological malignancy. The lack of effective treatments highlights the need for novel therapeutic interventions. The aim of this study was to investigate whether sustained adeno-associated virus (AAV) vector-mediated expression of vascular normalizing agents 3TSR and Fc3TSR and the antiangiogenic monoclonal antibody, Bevacizumab, with or without oncolytic virus treatment would improve survival in an orthotopic syngeneic mouse model of epithelial ovarian carcinoma. AAV vectors were administered 40 days post-tumor implantation and combined with oncolytic avian orthoavulavirus-1 (AOaV-1) 20 days later, at the peak of AAV-transgene expression, to ascertain whether survival could be extended. Flow cytometry conducted on blood samples, taken at an acute time point post-AOaV-1 administration (36 h), revealed a significant increase in activated NK cells in the blood of all mice that received AOaV-1. T cell analysis revealed a significant increase in CD8+ tumor specific T cells in the blood of AAV-Bevacizumab+AOaV-1 treated mice compared to control mice 10 days post AOaV-1 administration. Immunohistochemical staining of primary tumors harvested from a subset of mice euthanized 90 days post tumor implantation, when mice typically have large primary tumors, secondary peritoneal lesions, and extensive ascites fluid production, revealed that AAV-3TSR, AAV-Fc3TSR+AOaV-1, or AAV-Bevacizumab+AOaV-1 treated mice had significantly more tumor-infiltrating CD8+ T cells than PBS controls. Despite AAV-mediated transgene expression waning faster in tumor-bearing mice than in non-tumor bearing mice, all three of the AAV therapies significantly extended survival compared to control mice; with AAV-Bevacizumab performing the best in this model. However, combining AAV therapies with a single dose of AOaV-1 did not lead to significant extensions in survival compared to AAV therapies on their own, suggesting that additional doses of AOaV-1 may be required to improve efficacy in this model. These results suggest that vectorizing anti-angiogenic and vascular normalizing agents is a viable therapeutic option that warrants further investigation, including optimizing combination therapies.

10.
Cancers (Basel) ; 13(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34944889

RESUMEN

Survivin is a member of the inhibitor of apoptosis family of proteins and has been reported to be highly expressed in a variety of cancer types, making it a high priority target for cancer vaccination. We previously described a heterologous prime-boost strategy using a replication-deficient adenovirus, followed by an oncolytic rhabdovirus that generates unprecedented antigen-specific T cell responses. We engineered each vector to express a mutated version of full-length murine survivin. We first sought to uncover the complete epitope map for survivin-specific T cell responses in C57BL/6 and BALB/c mice by flow cytometry. However, no T cell responses were detected by intracellular cytokine staining after re-stimulation of T cells. Survivin has been found to be expressed by activated T cells, which could theoretically cause T cell-mediated killing of activated T cells, known as fratricide. We were unable to recapitulate this phenomenon in experiments. Interestingly, the inactivated survivin construct has been previously shown to directly kill tumor cells in vitro. However, there was no evidence in our models of induction of death in antigen-presenting cells due to treatment with a survivin-expressing vector. Using the same recombinant virus-vectored prime-boost strategy targeting the poorly immunogenic enhanced green fluorescent protein proved to be a highly sensitive method for mapping T cell epitopes, particularly in the context of identifying novel epitopes recognized by CD4+ T cells. Overall, these results suggested there may be unusually robust tolerance to survivin in commonly used mouse strains that cannot be broken, even when using a particularly potent vaccination platform. However, the vaccination method shows great promise as a strategy for identifying novel and subdominant T cell epitopes.

11.
Mol Ther Methods Clin Dev ; 23: 434-447, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34786436

RESUMEN

Poxviruses have been used extensively as vaccine vectors for human and veterinary medicine and have recently entered the clinical realm as immunotherapies for cancer. We present a comprehensive method for producing high-quality lots of the poxvirus Parapoxvirus ovis (OrfV) for use in preclinical models of vaccinology and cancer therapy. OrfV is produced using a permissive sheep skin-derived cell line and is released from infected cells by repeated freeze-thaw combined with sonication. We present two methods for isolation and purification of bulk virus. Isolated virus is concentrated to high titer using polyethylene glycol to produce the final in vivo-grade product. We also describe methods for quantifying OrfV infectious virions and determining genomic copy number to evaluate virus stocks. The methods herein will provide researchers with the ability to produce high-quality, high-titer OrfV for use in preclinical studies, and support the translation of OrfV-derived technologies into the clinic.

12.
Sci Rep ; 11(1): 15290, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315959

RESUMEN

Vaccination can prevent viral infections via virus-specific T cells, among other mechanisms. A goal of oncolytic virotherapy is replication of oncolytic viruses (OVs) in tumors, so pre-existing T cell immunity against an OV-encoded transgene would seem counterproductive. We developed a treatment for melanomas by pre-vaccinating against an oncolytic vesicular stomatitis virus (VSV)-encoded tumor antigen. Surprisingly, when the VSV-vectored booster vaccine was administered at the peak of the primary effector T cell response, oncolysis was not abrogated. We sought to determine how oncolysis was retained during a robust T cell response against the VSV-encoded transgene product. A murine melanoma model was used to identify two mechanisms that enable this phenomenon. First, tumor-infiltrating T cells had reduced cytopathic potential due to immunosuppression. Second, virus-induced lymphopenia acutely removed virus-specific T cells from tumors. These mechanisms provide a window of opportunity for replication of oncolytic VSV and rationale for a paradigm change in oncolytic virotherapy, whereby immune responses could be intentionally induced against a VSV-encoded melanoma-associated antigen to improve safety without abrogating oncolysis.


Asunto(s)
Virus Oncolíticos/genética , Transgenes , Vesiculovirus/genética , Vacunas Virales/inmunología , Animales , Ratones , Vacunas Virales/genética
13.
Nat Commun ; 12(1): 1930, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772027

RESUMEN

In our clinical trials of oncolytic vesicular stomatitis virus expressing interferon beta (VSV-IFNß), several patients achieved initial responses followed by aggressive relapse. We show here that VSV-IFNß-escape tumors predictably express a point-mutated CSDE1P5S form of the RNA-binding Cold Shock Domain-containing E1 protein, which promotes escape as an inhibitor of VSV replication by disrupting viral transcription. Given time, VSV-IFNß evolves a compensatory mutation in the P/M Inter-Genic Region which rescues replication in CSDE1P5S cells. These data show that CSDE1 is a major cellular co-factor for VSV replication. However, CSDE1P5S also generates a neo-epitope recognized by non-tolerized T cells. We exploit this predictable neo-antigenesis to drive, and trap, tumors into an escape phenotype, which can be ambushed by vaccination against CSDE1P5S, preventing tumor escape. Combining frontline therapy with escape-targeting immunotherapy will be applicable across multiple therapies which drive tumor mutation/evolution and simultaneously generate novel, targetable immunopeptidomes associated with acquired treatment resistance.


Asunto(s)
Proteínas de Unión al ADN/inmunología , Interferón beta/inmunología , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Proteínas de Unión al ARN/inmunología , Virus de la Estomatitis Vesicular Indiana/inmunología , Replicación Viral/inmunología , Animales , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Inmunoterapia/métodos , Interferón beta/metabolismo , Ratones Endogámicos C57BL , Mutación , Virus Oncolíticos/metabolismo , Virus Oncolíticos/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Virus de la Estomatitis Vesicular Indiana/metabolismo , Virus de la Estomatitis Vesicular Indiana/fisiología
14.
Mol Ther Oncolytics ; 20: 306-324, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33614913

RESUMEN

The avian paramyxovirus, Newcastle disease virus (NDV), is a promising oncolytic agent that has been shown to be safe and effective in a variety of pre-clinical cancer models and human clinical trials. NDV preferentially replicates in tumor cells due to signaling defects in apoptotic and antiviral pathways acquired during the transformation process and is a potent immunostimulatory agent. However, when used as a monotherapy NDV lacks the ability to consistently generate durable remissions. Here we investigate the use of viral sensitizer-mediated combination therapy to enhance the anti-neoplastic efficacy of NDV. Intratumoral injection of vanadyl sulfate, a pan-inhibitor of protein tyrosine phosphatases, in combination with NDV significantly increased the number and activation status of natural killer (NK) cells in the tumor microenvironment, concomitant with increased expression of interferon-ß, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1, leading to rapid tumor regression and long-term cures in mice bearing syngeneic B16-F10 melanomas. The anti-tumor efficacy of this combination therapy was abrogated when NK cells were depleted and when interferon-ß expression was transiently suppressed. Tumor-specific CD8+ T cell responses were not detected, nor were mice whose tumors regressed protected from re-challenge. This suggested efficacy of the combination therapy predominantly relied on the innate immune system. Importantly, efficacy was not limited to melanoma; it was also demonstrated in a murine prostate cancer model. Taken together, these results suggest that combining NDV with vanadyl sulfate potentiates an innate immune response that can potentiate rapid clearance of tumors, with type I interferon signaling and NK cells being important mechanisms of action.

15.
Cytokine Growth Factor Rev ; 56: 69-82, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32893095

RESUMEN

In the past two decades there have been substantial advances in understanding the anti-cancer mechanisms of oncolytic viruses (OVs). OVs can mediate their effects directly, by preferentially infecting and killing tumour cells. Additionally, OVs can indirectly generate anti-tumour immune responses. These differing mechanisms have led to a paradoxical divergence in strategies employed to further increase the potency of oncolytic virotherapies. On one hand, the tumour neovasculature is seen as a vital lifeline to the survival of the tumour, leading some to use OVs to target the tumour vasculature in hopes to starve cancers. Therapeutics causing vascular collapse can potentiate tumour hypoxia, nutrient restriction and pro-inflammatory cytokine release, which has shown promise in oncological studies. On the other hand, the same vasculature plays an important role for the dissemination of OVs, trafficking of effector cells and other therapeutics, which has prompted researchers to find ways of normalizing the vasculature to enhance infiltration of leukocytes and delivery of therapeutic agents. This article describes the recent developments of therapies aimed to shut down versus normalize tumour vasculature in order to inform researchers striving to optimize OV-based therapies.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Inmunoterapia , Neoplasias/terapia
16.
Nat Commun ; 11(1): 3929, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764559

RESUMEN

Surfactant protein B (SP-B) deficiency is an autosomal recessive disorder that impairs surfactant homeostasis and manifests as lethal respiratory distress. A compelling argument exists for gene therapy to treat this disease, as de novo protein synthesis of SP-B in alveolar type 2 epithelial cells is required for proper surfactant production. Here we report a rationally designed adeno-associated virus (AAV) 6 capsid that demonstrates efficiency in lung epithelial cell transduction based on imaging and flow cytometry analysis. Intratracheal administration of this vector delivering murine or human proSFTPB cDNA into SP-B deficient mice restores surfactant homeostasis, prevents lung injury, and improves lung physiology. Untreated SP-B deficient mice develop fatal respiratory distress within two days. Gene therapy results in an improvement in median survival to greater than 200 days. This vector also transduces human lung tissue, demonstrating its potential for clinical translation against this lethal disease.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos , Parvovirinae/genética , Proteinosis Alveolar Pulmonar/congénito , Proteína B Asociada a Surfactante Pulmonar/deficiencia , Animales , Animales Recién Nacidos , Línea Celular , Dependovirus , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Células HEK293 , Humanos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Transgénicos , Precursores de Proteínas/genética , Proteolípidos/genética , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/metabolismo , Proteinosis Alveolar Pulmonar/terapia , Proteína B Asociada a Surfactante Pulmonar/genética , Proteína B Asociada a Surfactante Pulmonar/metabolismo , Proteínas Asociadas a Surfactante Pulmonar/genética , Transducción Genética
17.
Hum Gene Ther ; 31(7-8): 459-471, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32000531

RESUMEN

Lung gene therapy requires efficient transduction of slow-replicating epithelia and stable expression of delivered transgenes in the respiratory tract. Lentiviral (LV) vectors have the ideal coding, expression, and transducing capacity required for gene therapy. A modified envelope glycoprotein from the Jaagsiekte Sheep Retrovirus, termed Jenv, is well suited for LV-mediated lung gene therapy due to its inherent lung tropism. Here, two novel Jenv-pseudotyped LVs that effectively transduce lung tissue and yield titers similar to the gold standard, vesicular stomatitis virus glycoprotein (VSVg)-pseudotyped LVs, were generated. As the concentration efficiency of LVs was found to depend on envelope pseudotype, a large-scale production method tailored for Jenv-pseudotyped LVs was developed and the most appropriate method of concentration was determined. In contrast to VSVg and Ebola virus glycoprotein-pseudotyped LVs, ultracentrifugation through a sucrose cushion drastically reduced the yield of Jenv LVs, whereas polyethylene glycol precipitation and tangential flow filtration (TFF) proved to be more suitable methods for concentrating Jenv LVs. Importantly, pressure during TFF was found to be crucial for increasing LV recovery. Finally, a unique mouse model was developed to test the suitability of these novel Jenv-pseudotyped LVs for use in lung gene therapy applications.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos , Lentivirus , Pulmón/metabolismo , Animales , Femenino , Glicoproteínas/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ovinos , Transducción Genética/métodos , Transgenes , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
18.
Mol Ther Methods Clin Dev ; 14: 189-196, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31388514

RESUMEN

As the development and clinical application of cancer immunotherapies continue to expand, so does the need for novel methods to dissect their mechanisms of action. Antibodies are important effector molecules in cancer therapies due to their potential to bind directly to surface-expressed antigens and facilitate Fc receptor-mediated uptake of antigens by antigen-presenting cells. Quantifying antibodies that are specific for defined antigens is straightforward. However, we describe herein a preclinical method to evaluate tumor-associated and virus-specific antibody responses to antigen-agnostic immunotherapies. This method uses autologous tumor cells as reservoirs of bulk tumor antigens, which can be bound by antibodies from the serum or plasma of tumor-bearing mice. These antibodies can then be detected and quantified using isotype-specific secondary antibodies conjugated to a fluorochrome. Alternatively, virus-infected cells can be used as a source of viral antigens. This method will enable researchers to assess antibody responses following immunotherapies without requiring pre-defined antigens. Alternatively, total virus-specific antibody responses could be studied as an alternative to more limited virus-neutralizing antibody assays. Therefore, this method can facilitate studying the role of humoral responses in the context of immunotherapies, including those that rely on the use of viral vectors.

19.
Mol Ther Methods Clin Dev ; 13: 154-166, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-30788384

RESUMEN

Immunotherapies are at the forefront of the fight against cancers, and researchers continue to develop and test novel immunotherapeutic modalities. Ideal cancer immunotherapies induce a patient's immune system to kill their own cancer and develop long-lasting immunity. Research has demonstrated a critical requirement for CD8+ and CD4+ T cells in achieving durable responses. In the path to the clinic, researchers require robust tools to effectively evaluate the capacity for immunotherapies to generate adaptive anti-tumor responses. To study functional tumor-specific T cells, researchers have relied on targeting tumor-associated antigens (TAAs) or the inclusion of surrogate transgenes in pre-clinical models, which facilitate detection of T cells by using the targeted antigen(s) in peptide re-stimulation or tetramer-staining assays. Unfortunately, many pre-clinical models lack a defined TAA, and epitope mapping of TAAs is costly. Surrogate transgenes can alter tumor engraftment and influence the immunogenicity of tumors, making them less relevant to clinical tumors. Further, some researchers prefer to develop therapies that do not rely on pre-defined TAAs. Here, we describe a method to exploit major histocompatibility complex expression on murine cancer cell lines in a co-culture assay to detect T cells responding to bulk, undefined, tumor antigens. This is a tool to support the preclinical evaluation of novel, antigen-agnostic immunotherapies.

20.
Viruses ; 11(2)2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30791481

RESUMEN

Myeloid cells represent a diverse range of innate leukocytes that are crucial for mounting successful immune responses against viruses. These cells are responsible for detecting pathogen-associated molecular patterns, thereby initiating a signaling cascade that results in the production of cytokines such as interferons to mitigate infections. The aim of this review is to outline recent advances in our knowledge of the roles that neutrophils and inflammatory monocytes play in initiating and coordinating host responses against viral infections. A focus is placed on myeloid cell development, trafficking and antiviral mechanisms. Although known for promoting inflammation, there is a growing body of literature which demonstrates that myeloid cells can also play critical regulatory or immunosuppressive roles, especially following the elimination of viruses. Additionally, the ability of myeloid cells to control other innate and adaptive leukocytes during viral infections situates these cells as key, yet under-appreciated mediators of pathogenic inflammation that can sometimes trigger cytokine storms. The information presented here should assist researchers in integrating myeloid cell biology into the design of novel and more effective virus-targeted therapies.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inflamación , Células Mieloides/inmunología , Virosis/inmunología , Virus/inmunología , Animales , Citocinas , Humanos , Inmunidad Innata , Interferones/inmunología , Ratones , Monocitos/inmunología , Células Mieloides/virología , Neutrófilos/inmunología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...