Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AJNR Am J Neuroradiol ; 44(4): 434-440, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958803

RESUMEN

BACKGROUND AND PURPOSE: Infarct evolution after endovascular treatment varies widely among patients with stroke and may be affected by baseline characteristics and procedural outcomes. Moreover, IV alteplase and endovascular treatment may influence the relationship of these factors to infarct evolution. We aimed to assess whether the infarct evolution between baseline and follow-up imaging was different for patients who received IVT and EVT versus EVT alone. MATERIALS AND METHODS: We included patients from the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN)-NO IV trial with baseline CTP and follow-up imaging. Follow-up infarct volume was segmented on 24-hour or 1-week follow-up DWI or NCCT. Infarct evolution was defined as the follow-up lesion volume: CTP core volume. Substantial infarct growth was defined as an increase in follow-up infarct volume of >10 mL. We assessed whether infarct evolution was different for patients with IV alteplase and endovascular treatment versus endovascular treatment alone and evaluated the association of baseline characteristics and procedural outcomes with infarct evolution using multivariable regression. RESULTS: From 228 patients with CTP results available, 145 patients had follow-up imaging and were included in our analysis. For patients with IV alteplase and endovascular treatment versus endovascular treatment alone, the baseline median CTP core volume was 17 (interquartile range = 4-35) mL versus 11 (interquartile range = 6-24) mL. The median follow-up infarct volume was 13 (interquartile range, 4-48) mL versus 17 (interquartile range = 4-50) mL. Collateral status and occlusion location were negatively associated with substantial infarct growth in patients with and without IV alteplase before endovascular treatment. CONCLUSIONS: No statistically significant difference in infarct evolution was found in directly admitted patients who received IV alteplase and endovascular treatment within 4.5 hours of symptom onset versus patients who underwent endovascular treatment alone. Collateral status and occlusion location may be useful predictors of infarct evolution prognosis in patients eligible for IV alteplase who underwent endovascular treatment.


Asunto(s)
Isquemia Encefálica , Procedimientos Endovasculares , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Activador de Tejido Plasminógeno/uso terapéutico , Isquemia Encefálica/patología , Resultado del Tratamiento , Procedimientos Endovasculares/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/cirugía , Infarto , Trombectomía
2.
AJNR Am J Neuroradiol ; 43(8): 1107-1114, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35902122

RESUMEN

BACKGROUND AND PURPOSE: Supervised deep learning is the state-of-the-art method for stroke lesion segmentation on NCCT. Supervised methods require manual lesion annotations for model development, while unsupervised deep learning methods such as generative adversarial networks do not. The aim of this study was to develop and evaluate a generative adversarial network to segment infarct and hemorrhagic stroke lesions on follow-up NCCT scans. MATERIALS AND METHODS: Training data consisted of 820 patients with baseline and follow-up NCCT from 3 Dutch acute ischemic stroke trials. A generative adversarial network was optimized to transform a follow-up scan with a lesion to a generated baseline scan without a lesion by generating a difference map that was subtracted from the follow-up scan. The generated difference map was used to automatically extract lesion segmentations. Segmentation of primary hemorrhagic lesions, hemorrhagic transformation of ischemic stroke, and 24-hour and 1-week follow-up infarct lesions were evaluated relative to expert annotations with the Dice similarity coefficient, Bland-Altman analysis, and intraclass correlation coefficient. RESULTS: The median Dice similarity coefficient was 0.31 (interquartile range, 0.08-0.59) and 0.59 (interquartile range, 0.29-0.74) for the 24-hour and 1-week infarct lesions, respectively. A much lower Dice similarity coefficient was measured for hemorrhagic transformation (median, 0.02; interquartile range, 0-0.14) and primary hemorrhage lesions (median, 0.08; interquartile range, 0.01-0.35). Predicted lesion volume and the intraclass correlation coefficient were good for the 24-hour (bias, 3 mL; limits of agreement, -64-59 mL; intraclass correlation coefficient, 0.83; 95% CI, 0.78-0.88) and excellent for the 1-week (bias, -4 m; limits of agreement,-66-58 mL; intraclass correlation coefficient, 0.90; 95% CI, 0.83-0.93) follow-up infarct lesions. CONCLUSIONS: An unsupervised generative adversarial network can be used to obtain automated infarct lesion segmentations with a moderate Dice similarity coefficient and good volumetric correspondence.


Asunto(s)
Aprendizaje Profundo , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Estudios de Seguimiento , Procesamiento de Imagen Asistido por Computador/métodos , Accidente Cerebrovascular/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Infarto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...