Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Circuits Syst ; 15(6): 1224-1235, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34818192

RESUMEN

This paper presents a low power, high dynamic range (DR), light-to-digital converter (LDC) for wearable chest photoplethysmogram (PPG) applications. The proposed LDC utilizes a novel 2nd-order noise-shaping slope architecture, directly converting the photocurrent to a digital code. This LDC applies a high-resolution dual-slope quantizer for data conversion. An auxiliary noise shaping loop is used to shape the residual quantization noise. Moreover, a DC compensation loop is implemented to cancel the PPG signal's DC component, thus further boosting the DR. The prototype is fabricated with 0.18 µm standard CMOS and characterized experimentally. The LDC consumes 28 µW per readout channel while achieving a maximum 134 dB DR. The LDC is also validated with on-body chest PPG measurement.


Asunto(s)
Dispositivos Electrónicos Vestibles , Diseño de Equipo
2.
IEEE Trans Biomed Circuits Syst ; 13(6): 1506-1517, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31581099

RESUMEN

An all-in-one battery powered low-power SoC for measuring multiple vital signs with wearables is proposed. All functionality needed in a typical wearable use case scenario, including dedicated readouts, power management circuitry, digital signal processing and wireless communication (BLE) is integrated in a single die. This high level of integration allows an unprecedented level of miniaturization leading to smaller component count which reduces cost and improves comfort and signal integrity. The SoC includes an ECG, Bio-Impedance and a fully differential PPG readout and can interface with external sensors (like an IMU). In a typical application scenario where all sensor readouts are enabled and key features (like heart rate) are calculated on the chip and streamed over the radio, the SoC consumes only 769 µW from the regulated 1.2 V supply.


Asunto(s)
Electrocardiografía/instrumentación , Corazón/fisiología , Algoritmos , Impedancia Eléctrica , Diseño de Equipo , Frecuencia Cardíaca , Humanos , Miniaturización , Procesamiento de Señales Asistido por Computador , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica
3.
IEEE Trans Biomed Circuits Syst ; 12(6): 1267-1277, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30489273

RESUMEN

This paper presents a sub-mW ASIC for multimodal brain monitoring. The ASIC is co-integrated with electrode(s) and optodes (i.e., optical source and detector) as an active sensor to measure electroencephalography (EEG), bio-impedance (BioZ), and near-infrared spectroscopy (NIRS) on scalp. The target is to build a wearable EEG-NIRS headset for low-cost functional brain imaging. The proposed NIRS readout utilizes the near-infrared light to measure the pulse oximetry and blood oxygen saturation (SpO2). While traditional photodiodes are supported, the readout also allows the use of silicon photomultipliers (SiPMs) as optical detectors. The SiPM improves optical sensitivity while significantly reducing the average power of two LEDs to 150 µW. On circuit level, a SAR-based calibration compensates maximum 40 µA current from ambient light, while digital DC-servo loops reduces the baseline static SiPM current up to 400 µA, leading to an overall dynamic range of 87 dB. The EEG readout exhibits 720 MΩ input impedance at 50 Hz. The BioZ readout has 3 mΩ/√(Hz) impedance sensitivity by employing dynamic circuit techniques. When EEG, BioZ, and NIRS are enabled at the same time, one ASIC consumes 665 µW including the power of LEDs.


Asunto(s)
Electroencefalografía/instrumentación , Neuroimagen Funcional/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Espectroscopía Infrarroja Corta/instrumentación , Dispositivos Electrónicos Vestibles , Encéfalo/fisiología , Equipos y Suministros Eléctricos , Diseño de Equipo , Humanos , Masculino
4.
IEEE Trans Biomed Circuits Syst ; 12(4): 774-783, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29993987

RESUMEN

This paper presents a 1.2 V 36 µW reconfigurable analog front-end (R-AFE) as a general-purpose low-cost IC for multiple-mode biomedical signals acquisition. The R-AFE efficiently reuses a reconfigurable preamplifier, a current generator (CG), and a mixed signal processing unit, having an area of 1.1 mm2 per R-AFE while supporting five acquisition modes to record different forms of cardiovascular and respiratory signals. The R-AFE can interface with voltage-, current-, impedance-, and light-sensors and hence can measure electrocardiography (ECG), bio-impedance (BioZ), photoplethysmogram (PPG), galvanic skin response (GSR), and general-purpose analog signals. Thanks to the chopper preamplifier and the low-noise CG utilizing dynamic element matching, the R-AFE mitigates ${\text{1}}\text{/}f$ noise from both the preamplifier and the CG for improved measurement sensitivity. The IC achieves competitive performance compared to the state-of-the-art dedicated readout ICs of ECG, BioZ, GSR, and PPG, but with approximately 1.4×-5.3× smaller chip area per channel.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico , Amplificadores Electrónicos , Enfermedades Cardiovasculares/fisiopatología , Electrocardiografía/métodos , Diseño de Equipo , Humanos , Fotopletismografía/métodos , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA