Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Chemosphere ; 351: 141237, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242512

RESUMEN

As a result of proposed global restrictions and regulations on current-use per-and polyfluoroalkyl substances (PFAS), research on possible alternatives is highly required. In this study, phase I in vitro metabolism of two novel prototype PFAS in human and rat was investigated. These prototype chemicals are intended to be safer-by-design and expected to mineralize completely, and thus be less persistent in the environment compared to the PFAS available on the market. Following incubation with rat liver S9 (RL-S9) fractions, two main metabolites per initial substance were produced, namely an alcohol and a short-chain carboxylic acid. While with human liver S9 (HL-S9) fractions, only the short-chain carboxylic acid was detected. Beyond these major metabolites, two and five additional metabolites were identified at very low levels by non-targeted screening for the ether- and thioether-linked prototype chemicals, respectively. Overall, complete mineralization during the in vitro hepatic metabolism of these novel PFAS by HL-S9 and RL-S9 fractions was not observed. The reaction kinetics of the surfactants was determined by using the metabolite formation, rather than the substrate depletion approach. With rat liver enzymes, the formation rates of primary metabolite alcohols were at least two orders of magnitude higher than those of secondary metabolite carboxylic acids. When incubating with human liver enzymes, the formation rates of single metabolite carboxylic acids, were similar or smaller than those experienced in rat. It also indicates that the overall metabolic rate and clearance of surfactants are significantly higher in rat liver than in human liver. The maximum formation rate of the thioether congener exceeded 10-fold that of the ether in humans but were similar in rats. Overall, the results suggest that metabolism of the prototype chemicals followed a similar trend to those reported in studies of fluorotelomer alcohols.


Asunto(s)
Fluorocarburos , Hígado , Ratas , Humanos , Animales , Hígado/metabolismo , Éteres , Ácidos Carboxílicos/metabolismo , Sulfuros/metabolismo , Tensoactivos/metabolismo , Fluorocarburos/metabolismo
2.
Environ Toxicol Chem ; 42(11): 2302-2316, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37589402

RESUMEN

Per- and polyfluorinated substances (PFAS) are a group of thousands of ubiquitously applied persistent industrial chemicals. The field of PFAS environmental research is developing rapidly, but suffers from substantial biases toward specific compounds, environmental compartments, and organisms. The aim of our study was therefore to highlight current developments and to identify knowledge gaps and subsequent research needs that would contribute to a comprehensive environmental risk assessment for PFAS. To this end, we consulted the open literature and databases and found that knowledge of the environmental fate of PFAS is based on the analysis of <1% of the compounds categorized as PFAS. Moreover, soils and suspended particulate matter remain largely understudied. The bioavailability, bioaccumulation, and food web transfer studies of PFAS also focus on a very limited number of compounds and are biased toward aquatic biota, predominantly fish, and less frequently aquatic invertebrates and macrophytes. The available ecotoxicity data revealed that only a few PFAS have been well studied for their environmental hazards, and that PFAS ecotoxicity data are also strongly biased toward aquatic organisms. Ecotoxicity studies in the terrestrial environment are needed, as well as chronic, multigenerational, and community ecotoxicity research, in light of the persistency and bioaccumulation of PFAS. Finally, we identified an urgent need to unravel the relationships among sorption, bioaccumulation, and ecotoxicity on the one hand and molecular descriptors of PFAS chemical structures and physicochemical properties on the other, to allow predictions of exposure, bioaccumulation, and toxicity. Environ Toxicol Chem 2023;42:2302-2316. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Ecotoxicología , Fluorocarburos , Animales , Invertebrados , Medición de Riesgo , Investigación , Fluorocarburos/toxicidad
3.
Chemosphere ; 339: 139563, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37482315

RESUMEN

In this study the environmental fate of two novel trifluoromethoxy-substituted surfactants with respectively an ether or thioether linkage were investigated, of which the design aimed for less persistency and complete mineralization. Long-term microbial transformation studies under aerobic conditions in activated sludge-wastewater medium were performed for 126 days. A semi-closed experimental system with a trapping sorbent was selected to avoid losses of possible volatile transformation products (TPs). The changes in the concentration of the surfactants and their expected TPs were monitored by target analysis using liquid chromatography-tandem mass spectrometry. Significant decrease in the concentration of the surfactants was observed over the incubation period. The main detected TPs were short-chained carboxylic acids (CAs), including a CA with two fluorinated carbon atoms representing the last product prior to mineralization. High stability of these CAs and lack in the formation of inorganic fluoride over the incubation time was however observed. Consequently, unequivocal final mineralization of the investigated surfactants could not be confirmed. Regarding the mass balance, the total amount of detected substances achieved only 30-37% of the expected concentration at the end of the incubation time. The reason of the incomplete mass balance should be further investigated.


Asunto(s)
Tensoactivos , Contaminantes Químicos del Agua , Biotransformación , Espectrometría de Masas , Aguas Residuales , Aguas del Alcantarillado/química , Ácidos Carboxílicos , Contaminantes Químicos del Agua/análisis
4.
Water Res ; 241: 120157, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37300966

RESUMEN

Pharmaceuticals are known to widely occur in the environment and to affect the health of ecosystems. Sewage treatment plants (STPs) are main emission pathways for pharmaceuticals, which are often not sufficiently removed during wastewater treatment. In Europe, STP treatment requirements are specified under the Urban WasteWater Treatment Directive (UWWTD). The introduction of advanced treatment techniques, such as ozonation and activated carbon, under the UWWTD is expected to be an important option to reduce pharmaceutical emissions. In this study, we present a European-wide analysis of STPs reported under the UWWTD, their current treatment level and potential to remove a set of 58 prioritised pharmaceuticals. Three different scenarios were analysed to show 1) UWWTD present effectiveness, 2) the effectiveness at full UWWTD compliance, and 3) the effectiveness when advanced treatment is implemented at STPs with a treatment capacity of >100.000 person equivalents. Based on a literature study, the potential of individual STPs to reduce pharmaceutical emissions ranged from an average of 9% for STPs with primary treatment to 84% for STPs applying advanced treatment. Results of our calculations show that European-wide emission of pharmaceuticals can be reduced with 68% when large STPs are updated with advanced treatment, but spatial differences exist. We argue that adequate attention should also be paid with regards to preventing environmental impacts of STPs with a capacity <100.000 p.e. Circa 44% of total STP effluent is emitted near Natura2000 sites (EU nature protection areas). Of all surface waters receiving STP effluent for which the ecological status has been assessed under the Water Framework Directive, 77% have a status of less than good. Relatively often only primary treatment is applied to wastewater emitted into coastal waters. This analysis can be used to further model pharmaceutical concentrations in European surface waters, to identify STPs for which more advanced treatment might be required and to protect EU aquatic biodiversity.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Humanos , Aguas del Alcantarillado/análisis , Contaminantes Químicos del Agua/análisis , Ecosistema , Aguas Residuales , Preparaciones Farmacéuticas , Monitoreo del Ambiente/métodos
5.
Sci Total Environ ; 888: 163888, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37164106

RESUMEN

Environmental risk assessment is generally based on atmospheric conditions for the modelling of chemical fate after entering the environment. However, during hydraulic fracturing, chemicals may be released deep underground. This study therefore focuses on the effects of high pressure and high temperature conditions on chemicals in flowback water to determine whether current environmental fate models need to be adapted in the context of downhole activities. Crushed shale and flowback water were mixed and exposed to different temperature (25-100 °C) and pressure (1-450 bar) conditions to investigate the effects they have on chemical fate. Samples were analysed using LC-HRMS based non-target screening. The results show that both high temperature and pressure conditions can impact the chemical fate of hydraulic fracturing related chemicals by increasing or decreasing concentrations via processes of transformation, sorption, degradation and/or dissolution. Furthermore, the degree and direction of change is chemical specific. The change is lower or equal to a factor of five, but for a few individual compounds the degree of change can exceed this factor of five. This suggests that environmental fate models based on surface conditions may be used for an approximation of chemical fate under downhole conditions by applying an additional factor of five to account for these uncertainties. More accurate insight into chemical fate under downhole conditions may be gained by studying a fluid of known chemical composition and an increased variability in temperature and pressure conditions including concentration, salinity and pH as variables.

6.
Environ Sci Process Impacts ; 25(6): 1067-1081, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37199459

RESUMEN

Measures are needed to protect water sources from substances that are mobile, persistent and toxic (PMT) or very persistent and very mobile (vPvM). PMT/vPvM substances are used in a diverse range of applications, including consumer products. The combined application of the essential-use and functional substitution concepts has been proposed to phase out substances of concern and support the transition to safer and more sustainable chemicals, a key goal of the European Commission's Chemicals Strategy for Sustainability. Here, we first identified the market share of PMT/vPvM containing cosmetic products. We found that 6.4% of cosmetic products available on the European market contain PMT or vPvM substances. PMT/vPvM substances were most often found in hair care products. Based on their high occurrence, the substances Allura red (CAS 25956-17-6), benzophenone-4 (CAS 4065-45-6) and climbazole (CAS 38083-17-9) were selected as case-studies for assessment of their functionality, availability of safer alternatives and essentiality. Following the functional substitution framework, we found that the technical function of Allura red was not necessary for the performance of some cosmetic products, making the use non-essential. For other applications of Allura red, as well as all applications of benzophenone-4 and climbazole, the technical function of the chemical was considered necessary for the performance. Via the alternative's assessment procedure, which used experimental and in silico data and three different multicriteria decision analysis (MCDA) strategies, safer alternatives were identified for all case-study chemicals. All assessed uses of PMT/vPvM substances were thus deemed non-essential and should consequently be phased out.


Asunto(s)
Benzofenonas , Cosméticos , Humanos
7.
Sci Total Environ ; 890: 164420, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37236451

RESUMEN

A wide range of PFAS residues were studied in an aquifer used for drinking water production which was affected by historical PFAS contamination from a landfill and military camp. Samples were taken at three monitoring and four pumping wells at different depths ranging from 33 to 147 m below the land surface and analysed for a series of 53 PFAS (C2-C14) and PFAS precursors (C4-C24). A comparison of results to earlier research from 2013, with a more limited range of PFAS, showed decreasing concentrations and migration of PFAS with increasing depth and distance from the contamination source. The PFAS profile and branched/linear isomer ratio are used as source characterization tools. The landfill was confirmed to contaminate the groundwater in both monitoring wells, while the military camp was indicated as a probable source for PFAS observed in the deep sampling points of one of the monitoring wells. Pumping wells used to produce drinking water are not yet affected by these two PFAS sources. In one of the four sampled pumping wells, a different PFAS profile and isomer pattern was observed, which indicated a different but yet unknown source. This work shows the necessity of implementing regular screening to identify potential (historical) PFAS sources to be able to prevent future contaminant migration nearby and towards drinking water abstraction wells.


Asunto(s)
Agua Potable , Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Agua Potable/química , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Fluorocarburos/análisis
8.
Environ Sci Technol ; 57(8): 3062-3074, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779784

RESUMEN

This study investigates human exposure to per- and polyfluoroalkyl substances (PFAS) via drinking water and evaluates human health risks. An analytical method for 56 target PFAS, including ultrashort-chain (C2-C3) and branched isomers, was developed. The limit of detection (LOD) ranged from 0.009 to 0.1 ng/L, except for trifluoroacetic-acid and perfluoropropanoic-acid with higher LODs of 35 and 0.24 ng/L, respectively. The method was applied to raw and produced drinking water from 18 Dutch locations, including groundwater or surface water as source, and applied various treatment processes. Ultrashort-chain (300 to 1100 ng/L) followed by the group of perfluoroalkyl-carboxylic-acids (PFCA, ≥C4) (0.4 to 95.1 ng/L) were dominant. PFCA and perfluoroalkyl-sulfonic-acid (≥C4), including precursors, showed significantly higher levels in drinking water produced from surface water. However, no significant difference was found for ultrashort PFAS, indicating the need for groundwater protection. Negative removal of PFAS occasionally observed for advanced treatment indicates desorption and/or degradation of precursors. The proportion of branched isomers was higher in raw and produced drinking water as compared to industrial production. Drinking water produced from surface water, except for a few locations, exceed non-binding provisional guideline values proposed; however, all produced drinking waters met the recent soon-to-be binding drinking-water-directive requirements.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Agua Potable/análisis , Agua Potable/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Fluorocarburos/análisis , Ácidos Carboxílicos , Ácidos Alcanesulfónicos/análisis
9.
Sci Total Environ ; 848: 157124, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35792263

RESUMEN

Micropollutants (MPs) in wastewater pose a growing concern for their potential adverse effects on the receiving aquatic environment, and some countries have started requiring that wastewater treatment plants remove them to a certain extent. Broad spectrum advanced treatment processes, such as ozonation, activated carbon or their combination, are expected to yield a significant reduction in the toxicity of effluents. Here we quantify the reduction of effluent toxicity potentially achieved by implementing these advanced treatment solutions in a selection of European wastewater treatment plants. To this end, we refer to a list of "total pollution proxy substances" (TPPS) composed of 1337 chemicals commonly found in wastewater effluents according to a compilation of datasets of measured concentrations. We consider these substances as an approximation of the "chemical universe" impinging on the European wastewater system. We evaluate the fate of the TPPS in conventional and advanced treatment plants using a compilation of experimental physicochemical properties that describe their sorption, volatilization and biodegradation during activated sludge treatment, as well as known removal efficiency in ozonation and activated carbon treatment, while filling the gaps through in silico prediction models. We estimate that the discharge of micropollutants with wastewater effluents in the European Union has a cumulative MP toxicity to the environment equal to the discharge of untreated wastewater of ca. 160 million population equivalents (PE), i.e. about 30 % of the generated wastewater in the EU. If all plants above a capacity of 100,000 PE were equipped with advanced treatment, we show that this load would be reduced to about 95 million PE. In addition, implementing advanced treatment in wastewater plants above 10,000 PE discharging to water bodies with an average dilution ratio smaller than 10 would yield a widespread improvement in terms of exposure of freshwater ecosystems to micropollutants, almost halving the part of the stream network exposed to the highest toxic risks. Our analysis provides background for a cost-effectiveness appraisal of advanced treatment "at the end of the pipe", which could lead to optimized interventions. This should not be regarded as a stand-alone solution, but as a complement to policies for the control of emissions at the source for the most problematic MPs.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico/química , Ecosistema , Ozono/análisis , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales/química , Agua/análisis , Contaminantes Químicos del Agua/análisis
10.
Chemosphere ; 307(Pt 1): 135684, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35850214

RESUMEN

Wastewater-based epidemiology (WBE) relies on the assessment and interpretation of levels of biomarkers in wastewater originating from a well-defined community. It has provided unique information on spatial and temporal trends of licit and illicit drug consumption, and has also the potential to give complementary information on human exposure to chemicals. Here, we focus on the accurate quantification of pesticide biomarkers (i.e., predominantly urinary metabolites) in influent wastewater at the ng L-1 level to be used for WBE. In the present study, an advanced analytical methodology has been developed based on ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), for the simultaneous determination of 11 specific human biomarkers of triazines, urea herbicides, pyrethroids and organophosphates in urban wastewater. The sample treatment consisted of solid-phase extraction using Oasis HLB cartridges. Direct injection of the samples was also tested for all compounds, as a simple and rapid way to determine these compounds without sample manipulation (i.e., minimizing potential analytical errors). However, if extraction recoveries are satisfactory, SPE is the preferred approach that allow reaching lower concertation levels. Six isotopically labelled internal standards were evaluated and used to correct for matrix effects. Due to the difficulties associated with this type of analysis, special emphasis has been placed on the analytical challenges encountered. The satisfactory validated methodology was applied to urban wastewater samples collected from different locations across Europe revealing the presence of 2,6-EA, 3,4-DCA, 3-PBA and 4-HSA i.e, metabolites of metolachlor-s, urea herbicides, pyrethroids and chlorpropham, respectively. Preliminary data reported in this paper illustrate the applicability of this analytical approach for assessing human exposure to pesticides through WBE.


Asunto(s)
Herbicidas , Drogas Ilícitas , Plaguicidas , Piretrinas , Contaminantes Químicos del Agua , Biomarcadores , Clorprofam , Cromatografía Líquida de Alta Presión/métodos , Herbicidas/análisis , Humanos , Drogas Ilícitas/análisis , Organofosfatos , Plaguicidas/análisis , Piretrinas/análisis , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Triazinas/análisis , Urea , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
11.
Water Res ; 222: 118878, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35878520

RESUMEN

This study aimed to provide insights into the risk posed by psychopharmaceuticals and illicit drugs in European surface waters, and to identify current knowledge gaps hampering this risk assessment. First, the availability and quality of data on the concentrations of psychopharmaceuticals and illicit drugs in surface waters (occurrence) and on the toxicity to aquatic organisms (hazard) were reviewed. If both occurrence and ecotoxicity data were available, risk quotients (risk) were calculated. Where abundant ecotoxicity data were available, a species sensitivity distribution (SSD) was constructed, from which the hazardous concentration for 5% of the species (HC5) was derived, allowing to derive integrated multi-species risks. A total of 702 compounds were categorised as psychopharmaceuticals and illicit drugs based on a combination of all 502 anatomical therapeutic class (ATC) 'N' pharmaceuticals and a list of illicit drugs according to the Dutch Opium Act. Of these, 343 (49%) returned occurrence data, while only 105 (15%) returned ecotoxicity data. Moreover, many ecotoxicity tests used irrelevant endpoints for neurologically active compounds, such as mortality, which may underestimate the hazard of psychopharmaceuticals. Due to data limitations, risks could only be assessed for 87 (12%) compounds, with 23 (3.3%) compounds indicating a potential risk, and several highly prescribed drugs returned neither occurrence nor ecotoxicity data. Primary bottlenecks in risk calculation included the lack of ecotoxicity data, a lack of diversity of test species and ecotoxicological end points, and large disparities between well studied and understudied compounds for both occurrence and toxicity data. This study identified which compounds merit concern, as well as the many compounds that lack the data for any calculation of risk, driving research priorities. Despite the large knowledge gaps, we concluded that the presence of a substantial part (26%) of data-rich psychopharmaceuticals in surface waters present an ecological risk for aquatic non-target organisms.


Asunto(s)
Drogas Ilícitas , Contaminantes Químicos del Agua , Organismos Acuáticos , Ecotoxicología , Monitoreo del Ambiente , Psicotrópicos , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
12.
Environ Int ; 166: 107356, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35760029

RESUMEN

BACKGROUND: Although drinking water in the Netherlands is generally accepted as safe, public concern about health risks of long-term intake still exist. OBJECTIVE: The aim was to explore associations between drinking water quality for nitrate, water hardness, calcium and magnesium and causes-of-death as related to cardiovascular diseases amongst which coronary heart disease and colorectal cancer. METHODS: We used national administrative databases on cause-specific mortality, personal characteristics, residential history, social economic indicators, air quality and drinking water quality for parameters specified by the EU Drinking Water Directive. We put together a cohort of 6,998,623 persons who were at least 30 years old on January 1, 2008 and lived for at least five years on the same address. The average drinking water concentration over 2000-2010 at the production stations were used as exposure indicators. We applied age stratified Cox proportional hazards models. RESULTS: Magnesium was associated with a reduced risk for mortality due to coronary heart diseases: HR of 0.95 (95% CI: 0.90, 0.99) per 10 mg/L increase. For mortality due to cardiovascular diseases, a 100 mg/L increase in calcium was associated with a HR of 1.08 (95% CI: 1.03, 1.13) and an increase of 2.5 mmol/L of water hardness with a HR of 1.06 (95% CI: 1.01, 1.10). The results show an elevated risk for coronary heart disease mortality at calcium concentrations below 30 mg/L, but over the whole exposure range no exposure response relation was observed. For other combinations of drinking water quality parameters and cause-specific mortality studied, no statistical significant associations were identified. CONCLUSION: We identified in this explorative study a protective effect of magnesium for the risk of mortality to coronary heart disease. Also we found an increased risk of mortality due to cardiovascular disease associated with the concentration of calcium and the water hardness in drinking water.

13.
Environ Toxicol Chem ; 41(8): 1977-1981, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35622061

RESUMEN

The influence of biofouling on zooplankton ingestion rates of plastics in freshwater environments has received limited attention. We investigated how biofouling of microplastics in wastewater effluent and in fresh surface water influences Daphnia magna's microplastic consumption. The differences in ingestion of the biofouled as compared with the virgin microplastics were higher for the surface water by a factor of seven compared with a factor of two for the effluent. The intake of biofouled microplastics by D. magna was higher compared with virgin plastics, but the reason for this preference should be further investigated. Environ Toxicol Chem 2022;41:1977-1981. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Animales , Daphnia , Microplásticos , Plásticos/toxicidad , Bocadillos , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
14.
Sci Total Environ ; 836: 155530, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35489496

RESUMEN

The widespread use of chemicals has led to significant water quality concerns, and their use is still increasing. Hence, there is an urgent need to understand the possible future trends in chemical emissions to water systems. This paper proposes a general framework for developing emission scenarios for chemicals to water using the Shared Socio-economic Pathways (SSPs) based on an emission-factor approach. The proposed approach involves three steps: (i) identification of the main drivers of emissions, (ii) quantification of emission factors based on analysis of publicly available data, and (iii) projection of emissions based on projected changes in the drivers and emission factors. The approach was tested in Europe for five chemical groups and on a national scale for five specific chemicals representing pharmaceuticals, pesticides, and industrial chemicals. The resulting emission scenarios show widely diverging trends of increased emissions by 240% for ibuprofen in SSP3 (regional rivalry) to a 68% decrease for diclofenac in SSP1 (sustainable development) by 2050. While emissions typically decrease in SSP1, they follow the historical trend in SSP2 (middle-of-the-road scenario) and show an increase in the regional rivalry scenario SSP3 for most selected chemicals. Overall, the framework allows understanding of future chemical emissions trends as a function of the socio-economic trends as captured in the SSPs. Our scenarios for chemical emissions can thus be used to model future aqueous emissions to support risk assessment. While the framework can be easily extended to other pharmaceuticals and pesticides, it heavily leans on the availability and quality of historical emission data and a detailed understanding of emission sources for industrial chemicals.


Asunto(s)
Plaguicidas , Calidad del Agua , Europa (Continente) , Preparaciones Farmacéuticas , Factores Socioeconómicos
15.
Chemosphere ; 296: 134050, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35189194

RESUMEN

Persistency of chemicals in the environment is seen a pressing issue as it results in accumulation of chemicals over time. Persistent chemicals can be an asset in a well-functioning circular economy where products are more durable and can be reused or recycled. This objective can however not always be fulfilled as release of chemicals from products into the environment can be inherently coupled to their use. In these situations, chemicals should be designed for degradation. In this study, a systematic and computer-aided workflow was developed to facilitate the chemical redesign for reduced persistency. The approach includes elements of Essential Use, Alternatives Assessment and Green and Circular Chemistry and ties into goals recently formulated in the context of the EU Green Deal. The organophosphate chemical triisobutylphosphate (TiBP) was used as a case study for exploration of the approach, as its emission to the environment was expected to be inevitable when used as a flame retardant. Over 6.3 million alternative structures were created in silico and filtered based on QSAR outputs to remove potentially non-readily biodegradable structures. With a multi-criteria analysis based on predicted properties and synthesizability a top 500 of most desirable structures was identified. The target structure (di-n-butyl (2-hydroxyethyl) phosphate) was manually selected and synthesized. The approach can be expanded and further verified to reach its full potential in the mitigation of chemical pollution and to help enable a safe circular economy.


Asunto(s)
Contaminación Ambiental , Retardadores de Llama , Computadores
17.
Water Res ; 207: 117789, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34731667

RESUMEN

Illicit drug use is complex, hidden and often highly stigmatized behaviour, which brings a vast challenge for drug surveillance systems. Drug consumption can be estimated by measuring human excretion products in untreated wastewater, known as wastewater-based epidemiology (WBE). Over the last decade, the application of wastewater-based epidemiology to monitor illicit drug loads increased and WBE is currently applied on a global scale. Studies from over the globe are evaluated with regard to their sampling method, analytical accuracy and consumption calculation, aiming to further reduce relevant uncertainties in order to make reliable comparisons on a global level. Only a limited number is identified as high-quality studies, so further standardization of the WBE approach for illicit drugs is desired especially with regard to the sampling methodology. Only a fraction of the reviewed papers explicitly reports uncertainty ranges for their consumption data. Studies which had the highest reliability are recently published, indicating an improvement in reporting WBE data. Until now, WBE has not been used in large parts of Africa, nor in the Middle East and Russia. An overview of consumption data across the continents on commonly studied drugs (cocaine, MDMA, amphetamine and methamphetamine) is provided. Overall, high consumption rates are confirmed in the US, especially for cocaine and methamphetamine, while relatively low illicit drug consumption is reported in Asia.


Asunto(s)
Drogas Ilícitas , Contaminantes Químicos del Agua , Humanos , Reproducibilidad de los Resultados , Detección de Abuso de Sustancias , Aguas Residuales/análisis , Monitoreo Epidemiológico Basado en Aguas Residuales , Contaminantes Químicos del Agua/análisis
18.
Sci Total Environ ; 794: 148727, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34323756

RESUMEN

There is public and scientific concern about air, soil and water contamination and possible adverse environmental and human health effects as a result of hydraulic fracturing activities. The use of greener chemicals in fracturing fluid aims to mitigate these effects. This study compares fracturing fluids marketed as either 'conventional' or 'green', as assessed by their chemical composition and their toxicity in bioassays. Chemical composition was analysed via non-target screening using liquid chromatography - high resolution mass spectrometry, while toxicity was evaluated by the Ames fluctuation test to assess mutagenicity and CALUX reporter gene assays to determine specific toxicity. Overall, the results do not indicate that the 'green' fluids are less harmful than the 'conventional' ones. First, there is no clear indication that the selected green fluids contain chemicals present at lower concentrations than the selected conventional fluids. Second, the predicted environmental fate of the identified compounds does not seem to be clearly distinct between the 'green' and 'conventional' fluids, based on the available data for the top five chemicals based on signal intensity that were tentatively identified. Furthermore, Ames fluctuation test results indicate that the green fluids have a similar genotoxic potential than the conventional fluids. Results of the CALUX reporter gene assays add to the evidence that there is no clear difference between the green and conventional fluids. These results do not support the claim that currently available and tested green-labeled fracturing fluids are environmentally more friendly alternatives to conventional fracturing fluids.


Asunto(s)
Fracking Hidráulico , Bioensayo , Cromatografía Liquida , Humanos , Contaminación del Agua
19.
Integr Environ Assess Manag ; 17(6): 1105-1113, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33860613

RESUMEN

Around the world, many ambitious environmental conventions and regulations have been implemented over recent decades. Despite this, the environment is still deteriorating. An increase in the volume and diversity of chemicals is one of the main drivers of this deterioration, of which biodiversity loss is a telling indicator. In response to this situation, in October 2020, a chemicals strategy for sustainability (CSS) was published in the EU. The CSS is the first regional framework aiming to address chemical pollution in a holistic manner. The CSS covers the complete lifecycle of a chemical, including the design of better substances and remediation options, to remove chemicals from the environment. The strategy contains terms, such as a "toxic-free environment," for which no clear definition exists, potentially hampering the implementation of the CSS. In this paper, a definition for a "toxic-free environment" is proposed on the basis of a survey and a discussion held at the 2020 SETAC Europe Annual Meeting. In addition, key issues that are absent from the CSS but are considered to be key for the realization of a toxic-free environment are identified. To achieve the policy goals, it is recommended to align the definition of risk across the different chemical legislations, to establish a platform for open data and data sharing, and to increase the utility and use of novel scientific findings in policymaking, through the development of a strong science to regulation feedback mechanism and vice versa. The paper concludes that environmental scientists have the tools to address the key challenges presented in the CSS. However, an extra step is needed by both policymakers and scientists to develop methods, processes and tools, to increase the robustness and transparency of deliberation processes, and the utility of science. Integr Environ Assess Manag 2021;17:1105-1113. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Ecotoxicología , Contaminación Ambiental , Biodiversidad , Formulación de Políticas , Medición de Riesgo
20.
J Cheminform ; 13(1): 1, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407901

RESUMEN

Mass spectrometry based non-target analysis is increasingly adopted in environmental sciences to screen and identify numerous chemicals simultaneously in highly complex samples. However, current data processing software either lack functionality for environmental sciences, solve only part of the workflow, are not openly available and/or are restricted in input data formats. In this paper we present patRoon, a new R based open-source software platform, which provides comprehensive, fully tailored and straightforward non-target analysis workflows. This platform makes the use, evaluation and mixing of well-tested algorithms seamless by harmonizing various common (primarily open) software tools under a consistent interface. In addition, patRoon offers various functionality and strategies to simplify and perform automated processing of complex (environmental) data effectively. patRoon implements several effective optimization strategies to significantly reduce computational times. The ability of patRoon to perform time-efficient and automated non-target data annotation of environmental samples is demonstrated with a simple and reproducible workflow using open-access data of spiked samples from a drinking water treatment plant study. In addition, the ability to easily use, combine and evaluate different algorithms was demonstrated for three commonly used feature finding algorithms. This article, combined with already published works, demonstrate that patRoon helps make comprehensive (environmental) non-target analysis readily accessible to a wider community of researchers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...