Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Phys ; 50(2): 935-946, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36202392

RESUMEN

BACKGROUND: Transarterial radioembolization (TARE) is a treatment modality for liver tumors during which radioactive microspheres are injected into the hepatic arterial system. These microspheres distribute throughout the liver as a result of the blood flow until they are trapped in the arterioles because of their size. Holmium-166 (166 Ho)-loaded microspheres used for TARE can be visualized and quantified with MRI, as holmium is a paramagnetic metal and locally increases the transverse relaxation rate R 2 ∗ $R_2^*$ . The current 166 Ho quantification method does not take regional differences in baseline R 2 ∗ $R_2^*$ values (such as between tumors and healthy tissue) into account, which intrinsically results in a systematic error in the estimated absorbed dose distribution. As this estimated absorbed dose distribution can be used to predict response to treatment of tumors and potential toxicity in healthy tissue, a high accuracy of absorbed dose estimation is required. PURPOSE: To evaluate pre-existing differences in R 2 ∗ $R_2^*$ distributions between tumor tissue and healthy tissue and assess the feasibility and accuracy of voxelwise subtraction-based Δ R 2 ∗ $\Delta R_2^*$ calculation for MRI-based dosimetry of holmium-166 transarterial radioembolization (166 Ho TARE). METHODS: MRI data obtained in six patients who underwent 166 Ho TARE of the liver as part of a clinical study was retrospectively evaluated. Pretreatment differences in R 2 ∗ $R_2^*$ distributions between tumor tissue and healthy tissue were characterized. Same-day pre- and post-treatment R 2 ∗ $R_2^*$ maps were aligned using a deformable registration algorithm and subsequently subtracted to generate voxelwise Δ R 2 ∗ $\Delta R_2^*$ maps and resultant absorbed dose maps. Image registration accuracy was quantified using the dice similarity coefficient (DSC), relative overlay (RO), and surface dice (≤4 mm; SDSC). Voxelwise subtraction-based absorbed dose maps were quantitatively (root-mean-square error, RMSE) and visually compared to the current MRI-based mean subtraction method and routinely used SPECT-based dosimetry. RESULTS: Pretreatment R 2 ∗ $R_2^*$ values were lower in tumors than in healthy liver tissue (mean 36.8 s-1 vs. 55.7 s-1 , P = 0.004). Image registration improved the mean DSC of 0.83 (range: 0.70-0.88) to 0.95 (range: 0.92-0.97), mean RO of 0.71 (range 0.53-0.78) to 0.90 (range: 0.86-0.94), and mean SDSC ≤4 mm of 0.47 (range: 0.28-0.67) to 0.97 (range: 0.96-0.98). Voxelwise subtraction-based absorbed dose maps yielded a higher tumor-absorbed dose (median increase of 9.0%) and lower healthy liver-absorbed dose (median decrease of 13.8%) compared to the mean subtraction method. Voxelwise subtraction-based absorbed dose maps corresponded better to SPECT-based absorbed dose maps, reflected by a lower RMSE in three of six patients. CONCLUSIONS: Voxelwise subtraction presents a robust alternative method for MRI-based dosimetry of 166 Ho microspheres that accounts for pre-existing R 2 ∗ $R_2^*$ differences, and appears to correspond better with SPECT-based dosimetry compared to the currently implemented mean subtraction method.


Asunto(s)
Embolización Terapéutica , Neoplasias Hepáticas , Humanos , Holmio/uso terapéutico , Estudios Retrospectivos , Radioisótopos/uso terapéutico , Neoplasias Hepáticas/terapia , Embolización Terapéutica/métodos , Imagen por Resonancia Magnética/métodos , Microesferas , Radioisótopos de Itrio
2.
Eur J Nucl Med Mol Imaging ; 49(13): 4705-4715, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35829749

RESUMEN

PURPOSE: Transarterial radioembolization (TARE) is a treatment for liver tumours based on injection of radioactive microspheres in the hepatic arterial system. It is crucial to achieve a maximum tumour dose for an optimal treatment response, while minimizing healthy liver dose to prevent toxicity. There is, however, no intraprocedural feedback on the dose distribution, as nuclear imaging can only be performed after treatment. As holmium-166 (166Ho) microspheres can be quantified with MRI, we investigate the feasibility and safety of performing 166Ho TARE within an MRI scanner and explore the potential of intraprocedural MRI-based dosimetry. METHODS: Six patients were treated with 166Ho TARE in a hybrid operating room. Per injection position, a microcatheter was placed under angiography guidance, after which patients were transported to an adjacent 3-T MRI system. After MRI confirmation of unchanged catheter location, 166Ho microspheres were injected in four fractions, consisting of 10%, 30%, 30% and 30% of the planned activity, alternated with holmium-sensitive MRI acquisition to assess the microsphere distribution. After the procedures, MRI-based dose maps were calculated from each intraprocedural image series using a dedicated dosimetry software package for 166Ho TARE. RESULTS: Administration of 166Ho microspheres within the MRI scanner was feasible in 9/11 (82%) injection positions. Intraprocedural holmium-sensitive MRI allowed for tumour dosimetry in 18/19 (95%) of treated tumours. Two CTCAE grade 3-4 toxicities were observed, and no adverse events were attributed to treatment in the MRI. Towards the last fraction, 4/18 tumours exhibited signs of saturation, while in 14/18 tumours, the microsphere uptake patterns did not deviate from the linear trend. CONCLUSION: This study demonstrated feasibility and preliminary safety of a first in-human application of TARE within a clinical MRI system. Intraprocedural MRI-based dosimetry enabled dynamic insight in the microsphere distribution during TARE. This proof of concept yields unique possibilities to better understand microsphere distribution in vivo and to potentially optimize treatment efficacy through treatment personalization. REGISTRATION: Clinicaltrials.gov, identifier NCT04269499, registered on February 13, 2020 (retrospectively registered).


Asunto(s)
Embolización Terapéutica , Neoplasias Hepáticas , Humanos , Embolización Terapéutica/efectos adversos , Embolización Terapéutica/métodos , Holmio/uso terapéutico , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Imagen por Resonancia Magnética , Microesferas , Radioisótopos de Itrio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...