Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 10: 1146457, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261119

RESUMEN

Background: Toll-like receptor (TLR) agonists have been investigated due to their potential dual effects as latency reverting agents and immune modulatory compounds in people living with HIV (PLWH). Here, we investigated whether co-stimulation of TLR7/8 agonists with RIG-I-like receptor (RLR) agonists enhances antiviral immunity. Methods: Peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (DCs) were incubated with TLR and RLR-agonists for 24 h and innate and adaptive immune responses were determined (maturation markers, cytokines in supernatant, ISG expression). Results: Both TLR7 and TLR8 agonists induced pro-inflammatory cytokines in DCs as well as PBMCs. TLR8 agonists were more potent in inducing cytokine responses and had a stronger effect on DC-induced immunity. Notably, while all compounds induced IL-12p70, co-stimulation with TLR8 agonists and RLR agonist polyI: C induced significantly higher levels of IL-12p70 in PBMCs. Moreover, crosstalk between TLR8 and RLR agonists induced a strong type I Interferon (IFN) response as different antiviral IFN-stimulated genes were upregulated by the combination compared to the agonists alone. Conclusion: Our data strongly suggest that TLR crosstalk with RLRs leads to strong antiviral immunity as shown by induction of IL-12 and type I IFN responses in contrast to TLRs alone. Thus, co-stimulation of TLRs and RLRs might be a powerful strategy to induce reactivation of latent reservoir as well as antiviral immunity that eliminates the reactivated cells.

3.
Sci Rep ; 13(1): 8851, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258559

RESUMEN

Nebulization of mRNA therapeutics can be used to directly target the respiratory tract. A promising prospect is that mucosal administration of lipid nanoparticle (LNP)-based mRNA vaccines may lead to a more efficient protection against respiratory viruses. However, the nebulization process can rupture the LNP vehicles and degrade the mRNA molecules inside. Here we present a novel nebulization method able to preserve substantially the integrity of vaccines, as tested with two SARS-CoV-2 mRNA vaccines. We compare the new method with well-known nebulization methods used for medical respiratory applications. We find that a lower energy level in generating LNP droplets using the new nebulization method helps safeguard the integrity of the LNP and vaccine. By comparing nebulization techniques with different energy dissipation levels we find that LNPs and mRNAs can be kept largely intact if the energy dissipation remains below a threshold value, for LNP integrity 5-10 J/g and for mRNA integrity 10-20 J/g for both vaccines.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2/genética , COVID-19/prevención & control , ARN Mensajero/genética , Vacunas de ARNm
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...