Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38142822

RESUMEN

BACKGROUND: The upper respiratory tract is continuously exposed to microorganisms and noxious elements, leading to local immune responses and the secretion of immune markers. While several studies describe immune marker profiles in respiratory mucosal samples in defined patient cohorts, mucosal immune profiles from the general population during the different seasons are lacking. Such baseline profiles are essential to understand the effect of various exposures to the mucosal immune system throughout life. OBJECTIVE: We sought to establish baseline local upper respiratory mucosal immune profiles in the general population and assess these profiles with regard to age, sex, seasonality, and basic health and lifestyle factors. METHODS: We measured the concentrations of 35 immune markers involved in a broad range of immunological processes at the mucosa in nasopharyngeal swab samples from 951 individuals, aged 0 to 86 years, from a nationwide study. RESULTS: Clustering analysis showed that immune marker profiles clearly reflected immunological functions, such as tissue regeneration and antiviral responses. Immune marker concentrations changed strongly with seasonality and age, with the most profound changes occurring in the first 25 years of life; they were also associated with sex, body mass index, smoking, mild symptoms of airway infection, and chronic asthma and hay fever. CONCLUSION: Immunological analyses of noninvasive mucosal samples provide insight into mucosal immune responses to microbial and noxious element exposure in the general population. These data provide a baseline for future studies on respiratory mucosal immune responses and for the development of mucosal immune-based diagnostics.

2.
Antiviral Res ; 197: 105223, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34856248

RESUMEN

Repurposing drugs is a promising strategy to identify therapeutic interventions against novel and re-emerging viruses. Posaconazole is an antifungal drug used to treat invasive aspergillosis and candidiasis. Recently, posaconazole and its structural analog, itraconazole were shown to inhibit replication of multiple viruses by modifying intracellular cholesterol homeostasis. Here, we show that posaconazole inhibits replication of the alphaviruses Semliki Forest virus (SFV), Sindbis virus and chikungunya virus with EC50 values ranging from 1.4 µM to 9.5 µM. Posaconazole treatment led to a significant reduction of virus entry in an assay using a temperature-sensitive SFV mutant, but time-of-addition and RNA transfection assays indicated that posaconazole also inhibits post-entry stages of the viral replication cycle. Virus replication in the presence of posaconazole was partially rescued by the addition of exogenous cholesterol. A transferrin uptake assay revealed that posaconazole considerably slowed down cellular endocytosis. A single point mutation in the SFV E2 glycoprotein, H255R, provided partial resistance to posaconazole as well as to methyl-ß-cyclodextrin, corroborating the effect of posaconazole on cholesterol and viral entry. Our results indicate that posaconazole inhibits multiple steps of the alphavirus replication cycle and broaden the spectrum of viruses that can be targeted in vitro by posaconazole, which could be further explored as a therapeutic agent against emerging viruses.


Asunto(s)
Alphavirus/efectos de los fármacos , Antivirales/farmacología , Reposicionamiento de Medicamentos/métodos , Triazoles/farmacología , Replicación Viral/efectos de los fármacos , Alphavirus/clasificación , Animales , Línea Celular , Virus Chikungunya/efectos de los fármacos , Chlorocebus aethiops , Cricetinae , Endocitosis/efectos de los fármacos , Humanos , Virus de los Bosques Semliki/efectos de los fármacos , Virus Sindbis/efectos de los fármacos , Células Vero , Internalización del Virus/efectos de los fármacos
3.
Viruses ; 13(2)2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670363

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a new human pathogen in late 2019 and it has infected over 100 million people in less than a year. There is a clear need for effective antiviral drugs to complement current preventive measures, including vaccines. In this study, we demonstrate that berberine and obatoclax, two broad-spectrum antiviral compounds, are effective against multiple isolates of SARS-CoV-2. Berberine, a plant-derived alkaloid, inhibited SARS-CoV-2 at low micromolar concentrations and obatoclax, which was originally developed as an anti-apoptotic protein antagonist, was effective at sub-micromolar concentrations. Time-of-addition studies indicated that berberine acts on the late stage of the viral life cycle. In agreement, berberine mildly affected viral RNA synthesis, but it strongly reduced infectious viral titers, leading to an increase in the particle-to-pfu ratio. In contrast, obatoclax acted at the early stage of the infection, which is in line with its activity to neutralize the acidic environment in endosomes. We assessed infection of primary human nasal epithelial cells that were cultured on an air-liquid interface and found that SARS-CoV-2 infection induced and repressed expression of specific sets of cytokines and chemokines. Moreover, both obatoclax and berberine inhibited SARS-CoV-2 replication in these primary target cells. We propose berberine and obatoclax as potential antiviral drugs against SARS-CoV-2 that could be considered for further efficacy testing.


Asunto(s)
Antivirales/farmacología , Berberina/farmacología , Indoles/farmacología , Pirroles/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Adolescente , Animales , COVID-19/virología , Células Cultivadas , Chlorocebus aethiops , Células Epiteliales/virología , Humanos , Masculino , ARN Viral/genética , SARS-CoV-2/fisiología , Células Vero
4.
mSphere ; 5(3)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32434838

RESUMEN

Tuberculosis (TB) represents the largest cause of death in human immunodeficiency virus (HIV)-infected individuals in part due to HIV-related CD4+ T cell loss, rendering patients immunocompromised and susceptible to a loss of Mycobacterium tuberculosis control. However, in light of increasing data pointing to a role for humoral immunity in controlling M. tuberculosis infection, here, we aimed to define whether HIV infection also alters the humoral immune response in subjects with active and latent TB. We show that in the setting of active TB, HIV-positive individuals have significantly lower IgG responses to LAM and Ag85 than HIV-negative individuals. Furthermore, significant isotype/subclass-specific differences were frequently observed, with active TB, HIV-positive individuals demonstrating compromised antigen-specific IgM titers. HIV-infected individuals with active TB also exhibited a significant loss of influenza hemagglutinin- and tetanus toxoid-specific antibody titers at the isotype/subclass level, a symptom of broad humoral immune dysfunction likely precipitated by HIV infection. Finally, we illustrated that despite the influence of HIV infection, differences in M. tuberculosis-specific antibody profiles persist between latent and active TB disease. Taken together, these findings reveal significant HIV-associated disruptions of the humoral immune response in HIV/TB-coinfected individuals.IMPORTANCE TB is the leading cause of death from a single infectious agent globally, followed by HIV. Furthermore, TB represents the leading cause of death among people with HIV. HIV is known to cause severe defects in T cell immunity, rendering HIV/TB-coinfected individuals more susceptible to TB disease progression and complicating accurate TB disease diagnosis. Here, we demonstrate that HIV infection is additionally associated with severely compromised antibody responses, particularly in individuals with active TB. Moreover, despite the influence of HIV infection, antibody profiles still allow accurate classification of individuals with active versus latent TB. These findings reveal novel immunologic challenges associated with HIV/TB coinfection and additionally provide a basis with which to leverage the key antibody features identified to potentially combat TB globally via next-generation therapeutic or diagnostic design.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Coinfección/inmunología , Infecciones por VIH/inmunología , Inmunidad Humoral , Tuberculosis Latente/inmunología , Tuberculosis/inmunología , Adulto , Anticuerpos Antibacterianos/clasificación , Linfocitos T CD4-Positivos/inmunología , Coinfección/microbiología , Coinfección/virología , Femenino , Infecciones por VIH/complicaciones , VIH-1 , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
5.
J Immunol ; 204(4): 954-966, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31915259

RESUMEN

Neutrophils are critical to the generation of effective immune responses and for killing invading microbes. Paired immune receptors provide important mechanisms to modulate neutrophil activation thresholds and effector functions. Expression of the leukocyte Ig-like receptor (LILR)A6 (ILT8/CD85b) and LILRB3 (ILT5/CD85a) paired-receptor system on human neutrophils has remained unclear because of the lack of specific molecular tools. Additionally, there is little known of their possible functions in neutrophil biology. The objective of this study was to characterize expression of LILRA6/LILRB3 receptors during human neutrophil differentiation and activation, and to assess their roles in modulating Fc receptor-mediated effector functions. LILRB3, but not LILRA6, was detected in human neutrophil lysates following immunoprecipitation by mass spectrometry. We demonstrate high LILRB3 expression on the surface of resting neutrophils and release from the surface following neutrophil activation. Surface expression was recapitulated in a human PLB-985 cell model of neutrophil-like differentiation. Continuous ligation of LILRB3 inhibited key IgA-mediated effector functions, including production of reactive oxygen species, phagocytic uptake, and microbial killing. This suggests that LILRB3 provides an important checkpoint to control human neutrophil activation and their antimicrobial effector functions during resting and early-activation stages of the neutrophil life cycle.


Asunto(s)
Antígenos CD/metabolismo , Neutrófilos/inmunología , Receptores Fc/metabolismo , Receptores Inmunológicos/metabolismo , Infecciones Estafilocócicas/inmunología , Antígenos CD/genética , Antígenos CD/aislamiento & purificación , Diferenciación Celular/inmunología , Línea Celular , Regulación hacia Abajo/inmunología , Humanos , Activación Neutrófila , Neutrófilos/metabolismo , Fagocitosis , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus capitis/inmunología
6.
Vaccines (Basel) ; 6(3)2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30223448

RESUMEN

Cathelicidins are host defense peptides with antimicrobial and immunomodulatory functions. These effector molecules of the innate immune system of many vertebrates are diverse in their amino acid sequence but share physicochemical characteristics like positive charge and amphipathicity. Besides being antimicrobial, cathelicidins have a wide variety in immunomodulatory functions, both boosting and inhibiting inflammation, directing chemotaxis, and effecting cell differentiation, primarily towards type 1 immune responses. In this review, we will examine the biology and various functions of cathelicidins, focusing on putting in vitro results in the context of in vivo situations. The pro-inflammatory and anti-inflammatory functions are highlighted, as well both direct and indirect effects on chemotaxis and cell differentiation. Additionally, we will discuss the potential and limitations of using cathelicidins as immunomodulatory or antimicrobial drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...