Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(9): R418-R434, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714175

RESUMEN

Ecosystem restoration can increase the health and resilience of nature and humanity. As a result, the international community is championing habitat restoration as a primary solution to address the dual climate and biodiversity crises. Yet most ecosystem restoration efforts to date have underperformed, failed, or been burdened by high costs that prevent upscaling. To become a primary, scalable conservation strategy, restoration efficiency and success must increase dramatically. Here, we outline how integrating ten foundational ecological theories that have not previously received much attention - from hierarchical facilitation to macroecology - into ecosystem restoration planning and management can markedly enhance restoration success. We propose a simple, systematic approach to determining which theories best align with restoration goals and are most likely to bolster their success. Armed with a century of advances in ecological theory, restoration practitioners will be better positioned to more cost-efficiently and effectively rebuild the world's ecosystems and support the resilience of our natural resources.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/métodos , Ecología/métodos , Restauración y Remediación Ambiental/métodos , Biodiversidad , Cambio Climático
2.
Science ; 382(6670): 589-594, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37917679

RESUMEN

Restoring vegetation in degraded ecosystems is an increasingly common practice for promoting biodiversity and ecological function, but successful implementation is hampered by an incomplete understanding of the processes that limit restoration success. By synthesizing terrestrial and aquatic studies globally (2594 experimental tests from 610 articles), we reveal substantial herbivore control of vegetation under restoration. Herbivores at restoration sites reduced vegetation abundance more strongly (by 89%, on average) than those at relatively undegraded sites and suppressed, rather than fostered, plant diversity. These effects were particularly pronounced in regions with higher temperatures and lower precipitation. Excluding targeted herbivores temporarily or introducing their predators improved restoration by magnitudes similar to or greater than those achieved by managing plant competition or facilitation. Thus, managing herbivory is a promising strategy for enhancing vegetation restoration efforts.


Asunto(s)
Biodiversidad , Restauración y Remediación Ambiental , Herbivoria , Plantas
3.
Nat Commun ; 14(1): 7158, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935673

RESUMEN

Channel networks are key to coastal wetland functioning and resilience under climate change. Vegetation affects sediment and hydrodynamics in many different ways, which calls for a coherent framework to explain how vegetation shapes channel network geometry and functioning. Here, we introduce an idealized model that shows how coastal wetland vegetation creates more complexly branching networks by increasing the ratio of channel incision versus topographic diffusion rates, thereby amplifying the channelization feedback that recursively incises finer-scale side-channels. This complexification trend qualitatively agrees with and provides an explanation for field data presented here as well as in earlier studies. Moreover, our model demonstrates that a stronger biogeomorphic feedback leads to higher and more densely vegetated marsh platforms and more extensive drainage networks. These findings may inspire future field research by raising the hypothesis that vegetation-induced self-organization enhances the storm surge buffering capacity of coastal wetlands and their resilience under sea-level rise.

4.
Sci Adv ; 9(18): eabq3520, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37134167

RESUMEN

Self-organized patterning, resulting from the interplay of biological and physical processes, is widespread in nature. Studies have suggested that biologically triggered self-organization can amplify ecosystem resilience. However, if purely physical forms of self-organization play a similar role remains unknown. Desiccation soil cracking is a typical physical form of self-organization in coastal salt marshes and other ecosystems. Here, we show that physically self-organized mud cracking was an important facilitating process for the establishment of seepweeds in a "Red Beach" salt marsh in China. Transient mud cracks can promote plant survivorship by trapping seeds, and enhance germination and growth by increasing water infiltration in the soil, thus facilitating the formation of a persistent salt marsh landscape. Cracks can help the salt marsh withstand more intense droughts, leading to postponed collapse and faster recovery. These are indications of enhanced resilience. Our work highlights that self-organized landscapes sculpted by physical agents can play a critical role in ecosystem dynamics and resilience to climate change.


Asunto(s)
Ecosistema , Humedales , Suelo , Agua , Cambio Climático
5.
Proc Natl Acad Sci U S A ; 120(2): e2202683120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595670

RESUMEN

Spatial self-organization of ecosystems into large-scale (from micron to meters) patterns is an important phenomenon in ecology, enabling organisms to cope with harsh environmental conditions and buffering ecosystem degradation. Scale-dependent feedbacks provide the predominant conceptual framework for self-organized spatial patterns, explaining regular patterns observed in, e.g., arid ecosystems or mussel beds. Here, we highlight an alternative mechanism for self-organized patterns, based on the aggregation of a biotic or abiotic species, such as herbivores, sediment, or nutrients. Using a generalized mathematical model, we demonstrate that ecosystems with aggregation-driven patterns have fundamentally different dynamics and resilience properties than ecosystems with patterns that formed through scale-dependent feedbacks. Building on the physics theory for phase-separation dynamics, we show that patchy ecosystems with aggregation patterns are more vulnerable than systems with patterns formed through scale-dependent feedbacks, especially at small spatial scales. This is because local disturbances can trigger large-scale redistribution of resources, amplifying local degradation. Finally, we show that insights from physics, by providing mechanistic understanding of the initiation of aggregation patterns and their tendency to coarsen, provide a new indicator framework to signal proximity to ecological tipping points and subsequent ecosystem degradation for this class of patchy ecosystems.


Asunto(s)
Bivalvos , Ecosistema , Animales , Modelos Teóricos
6.
Proc Natl Acad Sci U S A ; 119(28): e2123274119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35759652

RESUMEN

Biotic interactions that hierarchically organize ecosystems by driving ecological and evolutionary processes across spatial scales are ubiquitous in our biosphere. Biotic interactions have been extensively studied at local and global scales, but how long-distance, cross-ecosystem interactions at intermediate landscape scales influence the structure, function, and resilience of ecological systems remains poorly understood. We used remote sensing, modeling, and field data to test the hypothesis that the long-distance impact of an invasive species dramatically affects one of the largest tidal flat ecosystems in East Asia. We found that the invasion of exotic cordgrass Spartina alterniflora can produce long-distance effects on native species up to 10 km away, driving decadal coastal ecosystem transitions. The invasive cordgrass at low elevations facilitated the expansion of the native reed Phragmites australis at high elevations, leading to the massive loss and reduced resilience of the iconic Suaeda salsa "Red Beach" marshes at intermediate elevations, largely as a consequence of reduced soil salinity across the landscape. Our results illustrate the complex role that long-distance interactions can play in shaping landscape structure and ecosystem resilience and in bridging the gap between local and global biotic interactions.


Asunto(s)
Biota , Especies Introducidas , Poaceae , Humedales , Salinidad , Suelo/química
7.
Science ; 376(6593): eabn1479, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35511964

RESUMEN

Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and forest ecosystems. Here, we review how feedbacks between geomorphology and landscape-building vegetation underlie these qualities and how feedback disruption can switch wetlands from carbon sinks into sources. Currently, human activities are driving rapid declines in the area of major carbon-storing wetlands (1% annually). Our findings highlight the urgency to stop through conservation ongoing losses and to reestablish landscape-forming feedbacks through restoration innovations that recover the role of biogeomorphic wetlands as the world's biotic carbon hotspots.


Asunto(s)
Ecosistema , Humedales , Carbono , Secuestro de Carbono , Retroalimentación , Humanos
8.
Nat Commun ; 12(1): 6290, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725328

RESUMEN

Invasive consumers can cause extensive ecological damage to native communities but effects on ecosystem resilience are less understood. Here, we use drone surveys, manipulative experiments, and mathematical models to show how feral hogs reduce resilience in southeastern US salt marshes by dismantling an essential marsh cordgrass-ribbed mussel mutualism. Mussels usually double plant growth and enhance marsh resilience to extreme drought but, when hogs invade, switch from being essential for plant survival to a liability; hogs selectively forage in mussel-rich areas leading to a 50% reduction in plant biomass and slower post-drought recovery rate. Hogs increase habitat fragmentation across landscapes by maintaining large, disturbed areas through trampling of cordgrass during targeted mussel consumption. Experiments and climate-disturbance recovery models show trampling alone slows marsh recovery by 3x while focused mussel predation creates marshes that may never recover from large-scale disturbances without hog eradication. Our work highlights that an invasive consumer can reshape ecosystems not just via competition and predation, but by disrupting key, positive species interactions that underlie resilience to climatic disturbances.


Asunto(s)
Conducta Animal , Bivalvos/crecimiento & desarrollo , Ecosistema , Desarrollo de la Planta/fisiología , Poaceae/crecimiento & desarrollo , Simbiosis , Animales , Conservación de los Recursos Naturales/métodos , Porcinos , Humedales
9.
Science ; 374(6564): eabj0359, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34618584

RESUMEN

The concept of tipping points and critical transitions helps inform our understanding of the catastrophic effects that global change may have on ecosystems, Earth system components, and the whole Earth system. The search for early warning indicators is ongoing, and spatial self-organization has been interpreted as one such signal. Here, we review how spatial self-organization can aid complex systems to evade tipping points and can therefore be a signal of resilience instead. Evading tipping points through various pathways of spatial pattern formation may be relevant for many ecosystems and Earth system components that hitherto have been identified as tipping prone, including for the entire Earth system. We propose a systematic analysis that may reveal the broad range of conditions under which tipping is evaded and resilience emerges.

10.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34593647

RESUMEN

Patterned ground, defined by the segregation of stones in soil according to size, is one of the most strikingly self-organized characteristics of polar and high-alpine landscapes. The presence of such patterns on Mars has been proposed as evidence for the past presence of surface liquid water. Despite their ubiquity, the dearth of quantitative field data on the patterns and their slow dynamics have hindered fundamental understanding of the pattern formation mechanisms. Here, we use laboratory experiments to show that stone transport is strongly dependent on local stone concentration and the height of ice needles, leading effectively to pattern formation driven by needle ice activity. Through numerical simulations, theory, and experiments, we show that the nonlinear amplification of long wavelength instabilities leads to self-similar dynamics that resemble phase separation patterns in binary alloys, characterized by scaling laws and spatial structure formation. Our results illustrate insights to be gained into patterns in landscapes by viewing the pattern formation through the lens of phase separation. Moreover, they may help interpret spatial structures that arise on diverse planetary landscapes, including ground patterns recently examined using the rover Curiosity on Mars.

11.
Sci Adv ; 7(42): eabi8943, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34644105

RESUMEN

The world has increasingly relied on protected areas (PAs) to rescue highly valued ecosystems from human activities, but whether PAs will fare well with bioinvasions remains unknown. By analyzing three decades of seven of the largest coastal PAs in China, including World Natural Heritage and/or Wetlands of International Importance sites, we show that, although PAs are achieving success in rescuing iconic wetlands and critical shorebird habitats from once widespread reclamation, this success is counteracted by escalating plant invasions. Plant invasions were not only more extensive in PAs than non-PA controls but also undermined PA performance by, without human intervention, irreversibly replacing expansive native wetlands (primarily mudflats) and precluding successional formation of new native marshes. Exotic species are invading PAs globally. This study across large spatiotemporal scales highlights that the consequences of bioinvasions for humanity's major conservation tool may be more profound, far reaching, and critical for management than currently recognized.

12.
Bull Math Biol ; 83(10): 99, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34427781

RESUMEN

Self-organised regular pattern formation is one of the foremost examples of the development of complexity in ecosystems. Despite the wide array of mechanistic models that have been proposed to understand pattern formation, there is limited general understanding of the feedback processes causing pattern formation in ecosystems, and how these affect ecosystem patterning and functioning. Here we propose a generalised model for pattern formation that integrates two types of within-patch feedback: amplification of growth and reduction of losses. Both of these mechanisms have been proposed as causing pattern formation in mussel beds in intertidal regions, where dense clusters of mussels form, separated by regions of bare sediment. We investigate how a relative change from one feedback to the other affects the stability of uniform steady states and the existence of spatial patterns. We conclude that there are important differences between the patterns generated by the two mechanisms, concerning both biomass distribution in the patterns and the resilience of the ecosystems to disturbances.


Asunto(s)
Bivalvos , Ecosistema , Animales , Biomasa , Conceptos Matemáticos
13.
Am Nat ; 197(5): 615-623, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33908830

RESUMEN

AbstractSelf-organized, regular spatial patterns emerging from local interactions among individuals enhance the ability of ecosystems to respond to environmental disturbances. Mussels self-organize to form large, regularly patterned biogenic structures that modify the biotic and abiotic environment and provide numerous ecosystem functions and services. We used two mussel species that form monospecific and mixed beds to investigate how species-specific behavior affects self-organization and resistance to wave stress. Perna perna has strong attachment but low motility, while Mytilus galloprovincialis shows the reverse. At low density, the less motile P. perna has limited spatial self-organization compared with M. galloprovincialis, while when coexisting, the two species formed random spatial patterns. At high density, the two species self-organized in similar ways, while when coexisting, patterns were less strong. Spatial pattern formations significantly shaped resistance to hydrodynamic stress. At low density, P. perna beds with strong attachment and M. galloprovincialis beds with strong spatial organization showed higher retention rates than mixed beds. At high density, the presence of strongly attached P. perna significantly increased retention in mixed and P. perna beds compared with M. galloprovincialis beds. Our study emphasizes the importance of the interplay of species-specific behaviors to spatial self-organization and stress tolerance in natural communities.


Asunto(s)
Ecosistema , Mytilus , Densidad de Población , Estrés Fisiológico , Animales , Hidrodinámica , Mytilus/fisiología , Especificidad de la Especie , Estrés Fisiológico/fisiología
14.
Sci Adv ; 7(6)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33547078

RESUMEN

Spatial patterning is a fascinating theme in both theoretical and experimental ecology. It reveals resilience and stability to withstand external disturbances and environmental stresses. However, existing studies mainly focus on well-developed persistent patterns rather than transient patterns in self-organizing ecosystems. Here, combining models and experimental evidence, we show that transient fairy circle patterns in intertidal salt marshes can both infer the underlying ecological mechanisms and provide a measure of resilience. The models based on sulfide accumulation and nutrient depletion mechanisms reproduced the field-observed fairy circles, providing a generalized perspective on the emergence of transient patterns in salt marsh ecosystems. Field experiments showed that nitrogen fertilization mitigates depletion stress and shifts plant growth from negative to positive in the center of patches. Hence, nutrient depletion plays an overriding role, as only this process can explain the concentric rings. Our findings imply that the emergence of transient patterns can identify the ecological processes underlying pattern formation and the factors determining the ecological resilience of salt marsh ecosystems.

15.
Ecol Lett ; 24(2): 258-268, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33179408

RESUMEN

In biogeomorphic landscapes, plant traits can steer landscape development through plant-mediated feedback interactions. Interspecific differences in clonal expansion strategy can therefore lead to the emergence of different landscape organisations. Yet, whether landscape-forming plants adopt different clonal expansion strategies depending on their physical environment remains to be tested. Here, we use a field survey and a complementary mesocosm approach to investigate whether sediment deposition affects the clonal expansion strategy employed by dune-building marram grass individuals. Our results reveal a consistent shift in expansion pattern from more clumped, Brownian-like, movement in sediment-poor conditions, to patchier, Lévy-like, movement under high sediment supply rates. Additional model simulations illustrate that the sediment-dependent shift in movement strategies induces a shift in optimisation of the cost-benefit relation between landscape engineering (i.e. dune formation) and expansion. Plasticity in expansion strategy may therefore allow landscape-forming plants to optimise their engineering ability depending on their physical landscape.


Asunto(s)
Ecosistema , Poaceae , Ambiente , Humanos , Plantas
16.
Proc Biol Sci ; 287(1931): 20201147, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32673561

RESUMEN

Global climate change is expected to impact hydrodynamic conditions in stream ecosystems. There is limited understanding of how stream ecosystems interact and possibly adapt to novel hydrodynamic conditions. Combining mathematical modelling with field data, we demonstrate that bio-physical feedback between plant growth and flow redistribution triggers spatial self-organization of in-channel vegetation that buffers for changed hydrological conditions. The interplay of vegetation growth and hydrodynamics results in a spatial separation of the stream into densely vegetated, low-flow zones divided by unvegetated channels of higher flow velocities. This self-organization process decouples both local flow velocities and water levels from the forcing effect of changing stream discharge. Field data from two lowland, baseflow-dominated streams support model predictions and highlight two important stream-level emergent properties: vegetation controls flow conveyance in fast-flowing channels throughout the annual growth cycle, and this buffering of discharge variations maintains water depths and wetted habitat for the stream community. Our results provide important evidence of how plant-driven self-organization allows stream ecosystems to adapt to changing hydrological conditions, maintaining suitable hydrodynamic conditions to support high biodiversity.


Asunto(s)
Cambio Climático , Hidrodinámica , Ríos , Ecosistema , Modelos Teóricos
17.
Nat Commun ; 10(1): 2656, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201336

RESUMEN

Lifeforms ranging from bacteria to humans employ specialized random movement patterns. Although effective as optimization strategies in many scientific fields, random walk application in biology has remained focused on search optimization by mobile organisms. Here, we report on the discovery that heavy-tailed random walks underlie the ability of clonally expanding plants to self-organize and dictate the formation of biogeomorphic landscapes. Using cross-Atlantic surveys, we show that congeneric beach grasses adopt distinct heavy-tailed clonal expansion strategies. Next, we demonstrate with a spatially explicit model and a field experiment that the Lévy-type strategy of the species building the highest dunes worldwide generates a clonal network with a patchy shoot organization that optimizes sand trapping efficiency. Our findings demonstrate Lévy-like movement in plants, and emphasize the role of species-specific expansion strategies in landscape formation. This mechanistic understanding paves the way for tailor-made planting designs to successfully construct and restore biogeomorphic landscapes and their services.


Asunto(s)
Restauración y Remediación Ambiental , Dispersión de las Plantas/fisiología , Poaceae/fisiología , Brotes de la Planta/fisiología , Especificidad de la Especie
18.
Curr Biol ; 29(11): 1800-1806.e3, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31130456

RESUMEN

Increasing rates of sea-level rise and wave action threaten coastal populations. Defense of shorelines by protection and restoration of wetlands has been invoked as a win-win strategy for humans and nature, yet evidence from field experiments supporting the wetland protection function is uncommon, as is the understanding of its context dependency. Here we provide evidence from field manipulations showing that the loss of wetland vegetation, regardless of disturbance size, increases the rate of erosion on wave-stressed shorelines. Vegetation removal (simulated disturbance) along the edge of salt marshes reveals that loss of wetland plants elevates the rate of lateral erosion and that extensive root systems, rather than aboveground biomass, are primarily responsible for protection against edge erosion in marshes. Meta-analysis further shows that disturbances that generate plant die-off on salt marsh edges generally hasten edge erosion in coastal marshes and that the erosion protection function of wetlands relates more to lateral than vertical edge-erosional processes and is positively correlated with the amount of belowground plant biomass lost. Collectively, our findings substantiate a coastal protection paradigm that incorporates preservation of shoreline vegetation, illuminate key context dependencies in this theory, and highlight local disturbances (e.g., oil spills) that kill wetland plants as agents that can accelerate coastal erosion.


Asunto(s)
Biomasa , Conservación de los Recursos Naturales , Plantas , Humedales , Florida , Poaceae/fisiología
19.
Proc Biol Sci ; 286(1900): 20182859, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30966990

RESUMEN

Self-organized spatial patterns are increasingly recognized for their contribution to ecosystem functioning, in terms of enhanced productivity, ecosystem stability, and species diversity in terrestrial as well as marine ecosystems. Most studies on the impact of spatial self-organization have focused on systems that exhibit regular patterns. However, there is an abundance of patterns in many ecosystems which are not strictly regular. Understanding of how these patterns are formed and how they affect ecosystem function is crucial for the broad acceptance of self-organization as a keystone process in ecological theory. Here, using transplantation experiments in salt marsh ecosystems dominated by Scirpus mariqueter, we demonstrate that scale-dependent feedback is driving irregular spatial pattern formation of vegetation. Field observations and experiments have revealed that this self-organization process affects a range of plant traits, including shoot-to-root ratio, rhizome orientation, rhizome node number, and rhizome length, and enhances vegetation productivity. Moreover, patchiness in self-organized salt marsh vegetation can support a better microhabitat for macrobenthos, promoting their total abundance and spatial heterogeneity of species richness. Our results extend existing concepts of self-organization and its effects on productivity and biodiversity to the spatial irregular patterns that are observed in many systems. Our work also helps to link between the so-far largely unconnected fields of self-organization theory and trait-based, functional ecology.


Asunto(s)
Biodiversidad , Rasgos de la Historia de Vida , Fenómenos Fisiológicos de las Plantas , Humedales , China
20.
Ecology ; 100(1): e02559, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30411780

RESUMEN

Prolonged droughts exacerbated by climate change have been widely documented to interact with consumers to decimate vegetation in many ecosystems. Although climate change is increasing within-year variation in precipitation and temperature, how weather fluctuations affect the impact of consumers on vegetation processes remains poorly understood. In a salt marsh that has recently experienced drought-associated vegetation die-off, we investigated how top-down control of plant recovery by a prominent salt marsh grazer varies with weather. Our results showed that grazing-driven plant mortality varied strongly with weather in spring, with intense grazing occurring during cool, wet days immediately following rain. Intense grazing on cool, wet days across the generally dry spring season had a strong impact that eliminated plant seedlings that could otherwise have become tolerant of grazing in the following summer, thereby restricting vegetation recovery and contributing to the persistence of an unvegetated salt barren state. Thus, weather fluctuations can modulate the impact of consumers on vegetation recovery, a fundamental process underlying the fate of ecosystems after disturbances. A multi-timescale perspective on top-down control that combines the impact of short-term fluctuations in weather and that of long-term variation in mean climate can not only help understand ecosystem dynamics in an increasingly variable climate, but may also inform conservation strategies or recovery plans for ecosystems that are already lost to climate change.


Asunto(s)
Ecosistema , Tiempo (Meteorología) , Cambio Climático , Lluvia , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...