Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 26(5): 710-718, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38714853

RESUMEN

During brain development, neural progenitors expand through symmetric divisions before giving rise to differentiating cell types via asymmetric divisions. Transition between those modes varies among individual neural stem cells, resulting in clones of different sizes. Imaging-based lineage tracing allows for lineage analysis at high cellular resolution but systematic approaches to analyse clonal behaviour of entire tissues are currently lacking. Here we implement whole-tissue lineage tracing by genomic DNA barcoding in 3D human cerebral organoids, to show that individual stem cell clones produce progeny on a vastly variable scale. By using stochastic modelling we find that variable lineage sizes arise because a subpopulation of lineages retains symmetrically dividing cells. We show that lineage sizes can adjust to tissue demands after growth perturbation via chemical ablation or genetic restriction of a subset of cells in chimeric organoids. Our data suggest that adaptive plasticity of stem cell populations ensures robustness of development in human brain organoids.


Asunto(s)
Linaje de la Célula , Células-Madre Neurales , Organoides , Organoides/citología , Organoides/metabolismo , Humanos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diferenciación Celular , Proliferación Celular , Células Clonales , Neurogénesis/genética , Código de Barras del ADN Taxonómico , Animales
2.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175952

RESUMEN

Phosphoglucomutase 1 (PGM1) is a key enzyme for the regulation of energy metabolism from glycogen and glycolysis, as it catalyzes the interconversion of glucose 1-phosphate and glucose 6-phosphate. PGM1 deficiency is an autosomal recessive disorder characterized by a highly heterogenous clinical spectrum, including hypoglycemia, cleft palate, liver dysfunction, growth delay, exercise intolerance, and dilated cardiomyopathy. Abnormal protein glycosylation has been observed in this disease. Oral supplementation with D-galactose efficiently restores protein glycosylation by replenishing the lacking pool of UDP-galactose, and rescues some symptoms, such as hypoglycemia, hepatopathy, and growth delay. However, D-galactose effects on skeletal muscle and heart symptoms remain unclear. In this study, we established an in vitro muscle model for PGM1 deficiency to investigate the role of PGM1 and the effect of D-galactose on nucleotide sugars and energy metabolism. Genome-editing of C2C12 myoblasts via CRISPR/Cas9 resulted in Pgm1 (mouse homologue of human PGM1, according to updated nomenclature) knockout clones, which showed impaired maturation to myotubes. No difference was found for steady-state levels of nucleotide sugars, while dynamic flux analysis based on 13C6-galactose suggested a block in the use of galactose for energy production in knockout myoblasts. Subsequent analyses revealed a lower basal respiration and mitochondrial ATP production capacity in the knockout myoblasts and myotubes, which were not restored by D-galactose. In conclusion, an in vitro mouse muscle cell model has been established to study the muscle-specific metabolic mechanisms in PGM1 deficiency, which suggested that galactose was unable to restore the reduced energy production capacity.


Asunto(s)
Hipoglucemia , Fosfoglucomutasa , Animales , Ratones , Galactosa/farmacología , Glucosa , Homeostasis , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Nucleótidos , Fosfatos , Fosfoglucomutasa/genética , Fosfoglucomutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...