Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Intensive Care Med ; 50(1): 68-78, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172296

RESUMEN

PURPOSE: Ilofotase alfa is a human recombinant alkaline phosphatase with reno-protective effects that showed improved survival and reduced Major Adverse Kidney Events by 90 days (MAKE90) in sepsis-associated acute kidney injury (SA-AKI) patients. REVIVAL, was a phase-3 trial conducted to confirm its efficacy and safety. METHODS: In this international double-blinded randomized-controlled trial, SA-AKI patients were enrolled < 72 h on vasopressor and < 24 h of AKI. The primary endpoint was 28-day all-cause mortality. The main secondary endpoint was MAKE90, other secondary endpoints were (i) days alive and free of organ support through day 28, (ii) days alive and out of the intensive care unit (ICU) through day 28, and (iii) time to death through day 90. Prior to unblinding, the statistical analysis plan was amended, including an updated MAKE90 definition. RESULTS: Six hundred fifty patients were treated and analyzed for safety; and 649 for efficacy data (ilofotase alfa n = 330; placebo n = 319). The observed mortality rates in the ilofotase alfa and placebo groups were 27.9% and 27.9% at 28 days, and 33.9% and 34.8% at 90 days. The trial was stopped for futility on the primary endpoint. The observed proportion of patients with MAKE90A and MAKE90B were 56.7% and 37.4% in the ilofotase alfa group vs. 64.6% and 42.8% in the placebo group. Median [interquartile range (IQR)] days alive and free of organ support were 17 [0-24] and 14 [0-24], number of days alive and discharged from the ICU through day 28 were 15 [0-22] and 10 [0-22] in the ilofotase alfa and placebo groups, respectively. Adverse events were reported in 67.9% and 75% patients in the ilofotase and placebo group. CONCLUSION: Among critically ill patients with SA-AKI, ilofotase alfa did not improve day 28 survival. There may, however, be reduced MAKE90 events. No safety concerns were identified.


Asunto(s)
Lesión Renal Aguda , Fosfatasa Alcalina , Sepsis , Humanos , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Fosfatasa Alcalina/uso terapéutico , Unidades de Cuidados Intensivos , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
3.
BMJ Open ; 13(4): e065613, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012016

RESUMEN

INTRODUCTION: Sepsis, the leading cause of acute kidney injury (AKI), is associated with a high morbidity and mortality. Alkaline phosphatase (ALP) is an endogenous detoxifying enzyme. A recombinant human ALP compound, ilofotase alfa, showed no safety or tolerability concerns in a phase 2 trial. Renal function improvement over 28 days was significantly greater in the ilofotase alfa group. Moreover, a significant relative reduction in 28-day all-cause mortality of >40% was observed. A follow-up trial has been designed to confirm these findings. METHODS AND ANALYSIS: This is a phase 3, global, multi-centre, randomised, double-blind, placebo-controlled, sequential design trial in which patients are randomly assigned to either placebo or 1.6 mg/kg ilofotase alfa. Randomisation is stratified by baseline modified Sequential Organ Failure Assessment (mSOFA) score and trial site. The primary objective is to confirm the survival benefit with ilofotase alfa by demonstrating a reduction in 28-day all-cause mortality in patients with sepsis-associated AKI requiring vasopressors. A maximum of 1400 patients will be enrolled at ∼120 sites in Europe, North America, Japan, Australia and New Zealand. Up to four interim analyses will take place. Based on predefined decision rules, the trial may be stopped early for futility or for effectiveness. In addition, patients with COVID-19 disease and patients with 'moderate to severe' chronic kidney disease are analysed as 2 separate cohorts of 100 patients each. An independent Data Monitoring Committee evaluates safety data at prespecified intervals throughout the trial. ETHICS AND DISSEMINATION: The trial is approved by relevant institutional review boards/independent ethics committees and is conducted in accordance with the ethical principles of the Declaration of Helsinki, guidelines of Good Clinical Practice, Code of Federal Regulations and all other applicable regulations. Results of this study will determine the potential of ilofotase alfa to reduce mortality in critically ill patients with sepsis-associated AKI and will be published in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER: EudraCT CT Number 2019-0046265-24. US IND Number 117 605 Pre-results. CLINICALTRIALS: gov number: NCT04411472.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Sepsis , Humanos , SARS-CoV-2 , Fosfatasa Alcalina/uso terapéutico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Lesión Renal Aguda/etiología , Resultado del Tratamiento , Método Doble Ciego , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto , Ensayos Clínicos Fase III como Asunto
4.
JMIR Res Protoc ; 10(4): e27883, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908892

RESUMEN

BACKGROUND: Application of pesticides in the vicinity of homes has caused concern regarding possible health effects in residents living nearby. However, the high spatiotemporal variation of pesticide levels and lack of knowledge regarding the contribution of exposure routes greatly complicates exposure assessment approaches. OBJECTIVE: The objective of this paper was to describe the study protocol of a large exposure survey in the Netherlands assessing pesticide exposure of residents living close (<250 m) to agricultural fields; to better understand possible routes of exposure; to develop an integrative exposure model for residential exposure; and to describe lessons learned. METHODS: We performed an observational study involving residents living in the vicinity of agricultural fields and residents living more than 500 m away from any agricultural fields (control subjects). Residential exposures were measured both during a pesticide use period after a specific application and during the nonuse period for 7 and 2 days, respectively. We collected environmental samples (outdoor and indoor air, dust, and garden and field soils) and personal samples (urine and hand wipes). We also collected data on spraying applications as well as on home characteristics, participants' demographics, and food habits via questionnaires and diaries. Environmental samples were analyzed for 46 prioritized pesticides. Urine samples were analyzed for biomarkers of a subset of 5 pesticides. Alongside the field study, and by taking spray events and environmental data into account, we developed a modeling framework to estimate environmental exposure of residents to pesticides. RESULTS: Our study was conducted between 2016 and 2019. We assessed 96 homes and 192 participants, including 7 growers and 28 control subjects. We followed 14 pesticide applications, applying 20 active ingredients. We collected 4416 samples: 1018 air, 445 dust (224 vacuumed floor, 221 doormat), 265 soil (238 garden, 27 fields), 2485 urine, 112 hand wipes, and 91 tank mixtures. CONCLUSIONS: To our knowledge, this is the first study on residents' exposure to pesticides addressing all major nondietary exposure sources and routes (air, soil, dust). Our protocol provides insights on used sampling techniques, the wealth of data collected, developed methods, modeling framework, and lessons learned. Resources and data are open for future collaborations on this important topic. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/27883.

5.
Integr Environ Assess Manag ; 17(2): 352-363, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32910508

RESUMEN

Earthworms are important ecosystem engineers, and assessment of the risk of plant protection products toward them is part of the European environmental risk assessment (ERA). In the current ERA scheme, exposure and effects are represented simplistically and are not well integrated, resulting in uncertainty when the results are applied to ecosystems. Modeling offers a powerful tool to integrate the effects observed in lower tier laboratory studies with the environmental conditions under which exposure is expected in the field. This paper provides a summary of the (In)Field Organism Risk modEling by coupling Soil Exposure and Effect (FORESEE) Workshop held 28-30 January 2020 in Düsseldorf, Germany. This workshop focused on toxicokinetic-toxicodynamic (TKTD) and population modeling of earthworms in the context of ERA. The goal was to bring together scientists from different stakeholder groups to discuss the current state of soil invertebrate modeling and to explore how earthworm modeling could be applied to risk assessments, in particular how the different model outputs can be used in the tiered ERA approach. In support of these goals, the workshop aimed at addressing the requirements and concerns of the different stakeholder groups to support further model development. The modeling approach included 4 submodules to cover the most relevant processes for earthworm risk assessment: environment, behavior (feeding, vertical movement), TKTD, and population. Four workgroups examined different aspects of the model with relevance for risk assessment, earthworm ecology, uptake routes, and cross-species extrapolation and model testing. Here, we present the perspectives of each workgroup and highlight how the collaborative effort of participants from multidisciplinary backgrounds helped to establish common ground. In addition, we provide a list of recommendations for how earthworm TKTD modeling could address some of the uncertainties in current risk assessments for plant protection products. Integr Environ Assess Manag 2021;17:352-363. © 2020 SETAC.


Asunto(s)
Oligoquetos , Plaguicidas , Animales , Ecosistema , Alemania , Humanos , Plaguicidas/toxicidad , Medición de Riesgo , Suelo
6.
JAMA ; 320(19): 1998-2009, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30357272

RESUMEN

Importance: Sepsis-associated acute kidney injury (AKI) adversely affects long-term kidney outcomes and survival. Administration of the detoxifying enzyme alkaline phosphatase may improve kidney function and survival. Objective: To determine the optimal therapeutic dose, effect on kidney function, and adverse effects of a human recombinant alkaline phosphatase in patients who are critically ill with sepsis-associated AKI. Design, Setting, and Participants: The STOP-AKI trial was an international (53 recruiting sites), randomized, double-blind, placebo-controlled, dose-finding, adaptive phase 2a/2b study in 301 adult patients admitted to the intensive care unit with a diagnosis of sepsis and AKI. Patients were enrolled between December 2014 and May 2017, and follow-up was conducted for 90 days. The final date of follow-up was August 14, 2017. Interventions: In the intention-to-treat analysis, in part 1 of the trial, patients were randomized to receive recombinant alkaline phosphatase in a dosage of 0.4 mg/kg (n = 31), 0.8 mg/kg (n = 32), or 1.6 mg/kg (n = 29) or placebo (n = 30), once daily for 3 days, to establish the optimal dose. The optimal dose was identified as 1.6 mg/kg based on modeling approaches and adverse events. In part 2, 1.6 mg/kg (n = 82) was compared with placebo (n = 86). Main Outcomes and Measures: The primary end point was the time-corrected area under the curve of the endogenous creatinine clearance for days 1 through 7, divided by 7 to provide a mean daily creatinine clearance (AUC1-7 ECC). Incidence of fatal and nonfatal (serious) adverse events ([S]AEs) was also determined. Results: Overall, 301 patients were enrolled (men, 70.7%; median age, 67 years [interquartile range {IQR}, 59-73]). From day 1 to day 7, median ECC increased from 26.0 mL/min (IQR, 8.8 to 59.5) to 65.4 mL/min (IQR, 26.7 to 115.4) in the recombinant alkaline phosphatase 1.6-mg/kg group vs from 35.9 mL/min (IQR, 12.2 to 82.9) to 61.9 mL/min (IQR, 22.7 to 115.2) in the placebo group (absolute difference, 9.5 mL/min [95% CI, -23.9 to 25.5]; P = .47). Fatal adverse events occurred in 26.3% of patients in the 0.4-mg/kg recombinant alkaline phosphatase group; 17.1% in the 0.8-mg/kg group, 17.4% in the 1.6-mg/kg group, and 29.5% in the placebo group. Rates of nonfatal SAEs were 21.0% for the 0.4-mg/kg recombinant alkaline phosphatase group, 14.3% for the 0.8-mg/kg group, 25.7% for the 1.6-mg/kg group, and 20.5% for the placebo group. Conclusions and Relevance: Among patients who were critically ill with sepsis-associated acute kidney injury, human recombinant alkaline phosphatase compared with placebo did not significantly improve short-term kidney function. Further research is necessary to assess other clinical outcomes. Trial Registration: ClinicalTrials.gov Identifier: NCT02182440.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Fosfatasa Alcalina/administración & dosificación , Creatinina/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Anciano , Fosfatasa Alcalina/efectos adversos , Fosfatasa Alcalina/farmacología , Área Bajo la Curva , Enfermedad Crítica , Método Doble Ciego , Femenino , Estudios de Seguimiento , Humanos , Análisis de Intención de Tratar , Masculino , Persona de Mediana Edad , Sepsis/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...