Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 108(3-2): 035210, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37849197

RESUMEN

We present experimental observations of K_{ß} emission from highly charged Mg ions at solid density, driven by intense x rays from a free electron laser. The presence of K_{ß} emission indicates the n=3 atomic shell is relocalized for high charge states, providing an upper constraint on the depression of the ionization potential. We explore the process of state relocalization in dense plasmas from first principles using finite-temperature density functional theory alongside a wave-function localization metric, and find excellent agreement with experimental results.

2.
Nat Comput Sci ; 2(1): 30-37, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177703

RESUMEN

Understanding turbulence is key to our comprehension of many natural and technological flow processes. At the heart of this phenomenon lies its intricate multiscale nature, describing the coupling between different-sized eddies in space and time. Here we analyze the structure of turbulent flows by quantifying correlations between different length scales using methods inspired from quantum many-body physics. We present the results for interscale correlations of two paradigmatic flow examples, and use these insights along with tensor network theory to design a structure-resolving algorithm for simulating turbulent flows. With this algorithm, we find that the incompressible Navier-Stokes equations can be accurately solved even when reducing the number of parameters required to represent the velocity field by more than one order of magnitude compared to direct numerical simulation. Our quantum-inspired approach provides a pathway towards conducting computational fluid dynamics on quantum computers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...