Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 13(7)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290277

RESUMEN

The intent of this work is to numerically investigate the effect of second phase morphology on damage evolution characteristics of dual-phase (DP) steels. A strain gradient enhanced crystal plasticity framework is used in order to capture the deformation heterogeneity caused by lattice orientations and microstructural size effects. The investigation is focused on two different martensite distributions (banded and random) that are relevant for industrial applications. The effects of martensite morphology are compared by artificially generated 2D plane strain microstructures with initial void content. The Representative volume elements (RVEs) are subjected to tensile deformation imposed by periodic boundary conditions. Evolution of voids are analyzed individually as well as a whole and characterized with respect to average axial strain. It is found that during stretching voids exhibit varying evolution characteristics due to generation of inhomogeneous strain fields within the structure. The behavior of individual voids shows that the stress-state surrounding the void is different from the imposed far field macroscopic stress-state. The voids at the ferrite martensite interface and in ferrite grains of the randomly distributed martensite grow more than in the banded structure. On the other hand, voids formed by martensite cracking growth shows an opposite trend.

2.
Med Biol Eng Comput ; 58(6): 1341-1355, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279202

RESUMEN

Despite all the efforts to optimize the meniscus prosthesis system (geometry, material, and fixation type), the success of the prosthesis in clinical practice will depend on surgical factors such as intra-operative positioning of the prosthesis. In this study, the aim was therefore to assess the implications of positional changes of the medial meniscus prosthesis for knee biomechanics. A detailed validated finite element (FE) model of human intact and meniscal implanted knees was developed based on a series of in vitro experiments. Different non-anatomical prosthesis positions were applied in the FE model, and the biomechanical response during the gait stance phase compared with an anatomically positioned prosthesis, as well as meniscectomized and also the intact knee model. The results showed that an anatomical positioning of the medial meniscus prosthesis could better recover the intact knee biomechanics, while a non-anatomical positioning of the prosthesis to a limited extent alters the knee kinematics and articular contact pressure and increases the implantation failure risk. The outcomes indicate that a medial or anterior positioning of the meniscus prosthesis may be more forgiving than a posteriorly or laterally positioned prosthesis. The outcome of this study may provide a better insight into the possible consequences of meniscus prosthesis positioning errors for the patient and the prosthesis functionality. Graphical abstract.


Asunto(s)
Artroplastia de Reemplazo/métodos , Articulación de la Rodilla/fisiología , Prótesis de la Rodilla , Meniscos Tibiales/anatomía & histología , Fenómenos Biomecánicos , Cadáver , Diseño de Equipo , Análisis de Elementos Finitos , Marcha , Humanos , Articulación de la Rodilla/anatomía & histología , Meniscos Tibiales/fisiología , Modelos Anatómicos , Reproducibilidad de los Resultados , Estrés Mecánico , Lesiones de Menisco Tibial
3.
J Mech Behav Biomed Mater ; 93: 43-51, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30769233

RESUMEN

Characterization of the main tibiofemoral ligaments is an essential step in developing patient-specific computational models of the knee joint for personalized surgery pre-planning. Tensile tests are commonly performed in-vitro to characterize the mechanical stiffness and rupture force of the knee ligaments which makes the technique unsuitable for in-vivo application. The time required for the limited noninvasive approaches for properties estimation based on knee laxity remained the main obstacle in clinical implementation. Magnetic resonance imaging (MRI) technique can be a platform to noninvasively assess the knee ligaments. In this study the aim was to explore the potential role of quantitative MRI and dimensional properties, in characterizing the mechanical properties of the main tibiofemoral ligaments. After MR scanning of six cadaveric legs, all 24 main tibiofemoral bone-ligaments-bone specimens were tested in vitro. During the tensile test cross sectional area of the specimens was captured using ultrasound and force-displacement curve was extracted. Digital image correlation technique was implemented to check the strain behavior of the specimen and rupture region and to assure the fixation of ligament bony block during the test. The volume of the specimen was measured using manual segmentation data, and quantitative MR parameters as T2*, T1ρ, and T2 were calculated. Linear mixed statistical models for repeated measures were used to examine the association of MRI parameters and dimensional measurements with the mechanical properties (stiffness and rupture force). The results shows that while the mechanical properties were mostly correlated to the volume, inclusion of the MR parameters increased the correlation strength for stiffness (R2 ≈ 0.48) and partial rupture force (R2 = 0.53). Inclusion of ligament type in the statistical analysis enhanced the correlation of mechanical properties with MR parameters and volume as for stiffness (R2 = 0.60) and partial rupture (R2 = 0.57). In conclusion, this study revealed the potentials in using quantitative MR parameters, T1ρ, T2 and T2*, combined with specimen volume to estimate the essential mechanical properties of all main tibiofemoral ligaments required for subject-specific computational modeling of human knee joint.


Asunto(s)
Rodilla , Ligamentos Articulares/diagnóstico por imagen , Imagen por Resonancia Magnética , Fenómenos Mecánicos , Anciano , Fenómenos Biomecánicos , Humanos , Procesamiento de Imagen Asistido por Computador , Ensayo de Materiales , Resistencia a la Tracción
4.
Materials (Basel) ; 11(8)2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110884

RESUMEN

As the characteristic scale of products and production processes decreases, the plasticity phenomena observed start to deviate from those evidenced at the macroscale. The current research aims at investigating this gap using a lower-order gradient enhanced approach both using phenomenological continuum level as well as crystal plasticity models. In the phenomenological approach, a physically based hardening model relates the flow stress to the density of dislocations where it is assumed that the sources of immobile dislocations are both statistically stored (SSDs) as well as geometrically necessary dislocations (GNDs). In the crystal plasticity model, the evolution of the critical resolved shear stress is also defined based on the total number of dislocations. The GNDs are similarly incorporated in the hardening based on projecting the plastic strain gradients through the Burgers tensor on slip systems. A rate-independent formulation is considered that eliminates any artificial inhomogeneous hardening behavior due to numerical stabilization. The behavior of both models is compared in simulations focusing on the effect of structurally imposed gradients versus the inherent gradients arising in crystal plasticity simulations.

5.
J Biomech ; 65: 1-11, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-28917580

RESUMEN

In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome.


Asunto(s)
Articulación de la Rodilla/fisiología , Ligamentos Articulares/fisiología , Modelos Biológicos , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos
6.
Med Eng Phys ; 38(10): 1123-30, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27349493

RESUMEN

The finite element (FE) method has been widely used to investigate knee biomechanics. Time integration algorithms for dynamic problems in finite element analysis can be classified as either implicit or explicit. Although previously both static/dynamic implicit and dynamic explicit method have been used, a comparative study on the outcomes of both methods is of high interest for the knee modeling community. The aim of this study is to compare static, dynamic implicit and dynamic explicit solutions in analyses of the knee joint to assess the prediction of dynamic effects, potential convergence problems, the accuracy and stability of the calculations, the difference in computational time, and the influence of mass-scaling in the explicit formulation. The heel-strike phase of fast, normal and slow gait was simulated for two different body masses in a model of the native knee. Our results indicate that ignoring the dynamic effect can alter joint motion. Explicit analyses are suitable to simulate dynamic loading of the knee joint in high-speed simulations, as this method offers a substantial reduction of the computational time with a similar prediction of cartilage stresses and meniscus strains. Although mass-scaling can provide even more gain in computational time, it is not recommended for high-speed activities, in which inertial forces play a significant role.


Asunto(s)
Análisis de Elementos Finitos , Articulación de la Rodilla , Fenómenos Mecánicos , Fenómenos Biomecánicos , Cadáver , Fémur/fisiología , Marcha , Humanos , Cinética , Articulación de la Rodilla/fisiología , Tibia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...