Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Osteoarthritis Cartilage ; 31(7): 934-943, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36898656

RESUMEN

INTRODUCTION: The association between metabolic syndrome (MetS) and osteoarthritis (OA) development has become increasingly recognized. In this context, the exact role of cholesterol and cholesterol-lowering therapies in OA development has remained elusive. Recently, we did not observe beneficial effects of intensive cholesterol-lowering treatments on spontaneous OA development in E3L.CETP mice. We postulated that in the presence of local inflammation caused by a joint lesion, cholesterol-lowering therapies may ameliorate OA pathology. MATERIALS AND METHODS: Female ApoE3∗Leiden.CETP mice were fed a cholesterol-supplemented Western type diet. After 3 weeks, half of the mice received intensive cholesterol-lowering treatment consisting of atorvastatin and the anti-PCSK9 antibody alirocumab. Three weeks after the start of the treatment, OA was induced via intra-articular injections of collagenase. Serum levels of cholesterol and triglycerides were monitored throughout the study. Knee joints were analyzed for synovial inflammation, cartilage degeneration, subchondral bone sclerosis and ectopic bone formation using histology. Inflammatory cytokines were determined in serum and synovial washouts. RESULTS: Cholesterol-lowering treatment strongly reduced serum cholesterol and triglyceride levels. Mice receiving cholesterol-lowering treatment showed a significant reduction in synovial inflammation (P = 0.008, WTD: 95% CI: 1.4- 2.3; WTD + AA: 95% CI: 0.8- 1.5) and synovial lining thickness (WTD: 95% CI: 3.0-4.6, WTD + AA: 95% CI: 2.1-3.2) during early-stage collagenase-induced OA. Serum levels of S100A8/A9, MCP-1 and KC were significantly reduced after cholesterol-lowering treatment (P = 0.0005, 95% CI: -46.0 to -12.0; P = 2.8 × 10-10, 95% CI: -398.3 to -152.1; P = 2.1 × 10-9, -66.8 to -30.4, respectively). However, this reduction did not reduce OA pathology, determined by ectopic bone formation, subchondral bone sclerosis and cartilage damage at end-stage disease. CONCLUSION: This study shows that intensive cholesterol-lowering treatment reduces joint inflammation after induction of collagenase-induced OA, but this did not reduce end stage pathology in female mice.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratones , Femenino , Animales , Esclerosis/patología , Membrana Sinovial/metabolismo , Osteoartritis/inducido químicamente , Osteoartritis/tratamiento farmacológico , Osteoartritis/complicaciones , Inflamación/metabolismo , Colagenasas/toxicidad , Colagenasas/metabolismo , Colesterol/metabolismo , Modelos Animales de Enfermedad , Cartílago Articular/patología
2.
Osteoarthritis Cartilage ; 31(3): 340-350, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36442605

RESUMEN

INTRODUCTION: Both systemic inflammation and dyslipidemia contribute to osteoarthritis (OA) development and have been suggested as a possible link between metabolic disease and OA development. Recently, the CANTOS trial showed a reduction in knee and hip replacements after inhibition of IL-1ß in patients with a history of cardiovascular disease and high inflammatory risk. In this light, we investigated whether inhibition of IL-1ß combined with cholesterol-lowering therapies can reduce OA development in dyslipidemic APOE∗3Leiden mice under pro-inflammatory dietary conditions. MATERIALS AND METHODS: Female ApoE3∗Leiden mice were fed a cholesterol-supplemented Western-Type diet (WTD) for 38 weeks. After 14 weeks, cholesterol-lowering and anti-inflammatory treatments were started. Treatments included atorvastatin alone or with an anti-IL1ß antibody, and atorvastatin combined with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitor alirocumab without or with the anti-IL1ß antibody. Knee joints were analyzed for cartilage degradation, synovial inflammation and ectopic bone formation using histology at end point. RESULTS: Cholesterol-lowering treatment successfully decreased systemic inflammation in dyslipidemic mice, which was not further affected by inhibition of IL-1ß. Synovial thickening and cartilage degeneration were significantly decreased in mice that received cholesterol-lowering treatment combined with inhibition of IL-1ß (P < 0.01, P < 0.05, respectively) compared to mice fed a WTD alone. Ectopic bone formation was comparable between all groups. CONCLUSION: These results indicate that inhibition of IL-1ß combined with cholesterol-lowering therapy diminishes synovial thickening and cartilage degeneration in mice and may imply that this combination therapy could be beneficial in patients with metabolic inflammation.


Asunto(s)
Dislipidemias , Osteoartritis , Sinovitis , Ratones , Femenino , Animales , Proproteína Convertasa 9 , Atorvastatina , Colesterol/metabolismo , Inflamación , Modelos Animales de Enfermedad , Osteoartritis/metabolismo , Cartílago/metabolismo
3.
Osteoarthritis Cartilage ; 29(10): 1462-1473, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34298196

RESUMEN

OBJECTIVE: Metabolic dysfunction can cause IL-1ß mediated activation of the innate immune system, which could have important implications for the therapeutic efficacy of IL-1ß neutralizing drugs as treatment for OA in the context of metabolic syndrome (MetS). In the present study, we investigated whether early treatment with a single dose of IL-1ß blocking antibodies could prevent Western diet (WD) induced changes to systemic monocyte populations and their cytokine secretion profile and herewith modulate collagenase induced osteoarthritis (CiOA) pathology. METHODS: CiOA was induced in female C57Bl/6 mice fed either a standard diet (SD) or WD and treated with a single dose of either polyclonal anti-IL-1ß antibodies or control. Monocyte subsets and granulocytes in bone marrow and blood were analyzed with flow cytometry, and cytokine expression by bone marrow cells was analyzed using qPCR. Synovial cellularity, cartilage damage and osteophyte formation were assessed on histology. RESULTS: WD feeding of C57Bl/6 mice led to increased serum levels of low-density lipoprotein (LDL) and innate immune activation in the form of an increased number of Ly6Chigh cells in bone marrow and blood and increased cytokine expression of IL-6 and TNF-α by bone marrow cells. The increase in monocyte number and activity was ameliorated by anti-IL-1ß treatment. However, anti-IL-1ß treatment did not significantly affect synovial lining thickness, cartilage damage and ectopic bone formation during WD feeding. CONCLUSIONS: Single-dose systemic anti-IL-1ß treatment prevented WD-induced innate immune activation during early stage CiOA in C57Bl/6 mice, but did not ameliorate joint pathology.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Dieta Occidental/efectos adversos , Interleucina-1beta/inmunología , Osteoartritis/inmunología , Animales , Antígenos Ly/metabolismo , Artritis Experimental , Células de la Médula Ósea/metabolismo , Recuento de Células , Femenino , Humanos , Interleucina-6/metabolismo , Lipoproteínas LDL/sangre , Monocitos/metabolismo , Rodilla de Cuadrúpedos/patología , Membrana Sinovial/patología , Factor de Necrosis Tumoral alfa/metabolismo
4.
Osteoarthritis Cartilage ; 29(9): 1314-1323, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33722697

RESUMEN

OBJECTIVE: High systemic cholesterol levels have been associated with osteoarthritis (OA) development. Therefore, cholesterol lowering by statins has been suggested as a potential treatment for OA. We investigated whether therapeutic high-intensive cholesterol-lowering attenuated OA development in dyslipidemic APOE∗3Leiden.CETP mice. METHODS: Female mice (n = 13-16 per group) were fed a Western-type diet (WTD) for 38 weeks. After 13 weeks, mice were divided into a baseline group and five groups receiving WTD alone or with treatment: atorvastatin alone, combined with PCSK9 inhibitor alirocumab and/or ANGPTL3 inhibitor evinacumab. Knee joints were analysed for cartilage degradation, synovial inflammation and ectopic bone formation using histology. Aggrecanase activity in articular cartilage and synovial S100A8 expression were determined as markers of cartilage degradation/regeneration and inflammation. RESULTS: Cartilage degradation and active repair were significantly increased in WTD-fed mice, but cholesterol-lowering strategies did not ameliorate cartilage destruction. This was supported by comparable aggrecanase activity and S100A8 expression in all treatment groups. Ectopic bone formation was comparable between groups and independent of cholesterol levels. CONCLUSIONS: Intensive therapeutic cholesterol lowering per se did not attenuate progression of cartilage degradation in dyslipidemic APOE∗3Leiden.CETP mice, with minor joint inflammation. We propose that inflammation is a key feature in the disease and therapeutic cholesterol-lowering strategies may still be promising for OA patients presenting both dyslipidemia and inflammation.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Anticolesterolemiantes/uso terapéutico , Atorvastatina/uso terapéutico , Dislipidemias/tratamiento farmacológico , Osteoartritis de la Rodilla/prevención & control , Animales , Dislipidemias/complicaciones , Femenino , Ratones , Ratones Endogámicos C57BL , Osteoartritis de la Rodilla/etiología , Insuficiencia del Tratamiento
5.
Osteoarthritis Cartilage ; 29(2): 143-150, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33242602

RESUMEN

This year in review about osteoarthritis biology highlights a selection of articles published between the 2019 and 2020 Osteoarthritis Research Society International (OARSI) World Congress meetings, within the field of osteoarthritis biology. Highlights were selected from PubMed searches covering osteoarthritis (OA) cartilage, subchondral bone, synovium and aging. Subsequently, a personal selection was based on new and emerging themes together with common research topics that were studied by multiple groups. Themes discussed include novel insights into the inflammatory changes during OA, with a number of noteworthy publications concerning the role of macrophages in healthy and osteoarthritic joints. Next, the application of mesenchymal stem cells as OA-dampening therapy is discussed, including possible ways to improve their efficacy by pre-treatment. Other significant themes including treatment of OA with metformin, enhancing autophagy to alleviate OA and the involvement of the gastro-intestinal microbiome in development of OA symptoms and structural damage are discussed. An effort was made to connect the seemingly distant topics from which the overarching conclusion can be drawn that over the last year promising breakthroughs have been achieved in further understanding the biology of OA development and that new therapeutic possibilities have been explored.


Asunto(s)
Microbioma Gastrointestinal , Inflamación/inmunología , Macrófagos/inmunología , Osteoartritis/inmunología , Autofagia/inmunología , Cartílago Articular , Humanos , Hipoglucemiantes/uso terapéutico , Inflamación/metabolismo , Inflamación/microbiología , Trasplante de Células Madre Mesenquimatosas , Metformina/uso terapéutico , Osteoartritis/metabolismo , Osteoartritis/microbiología , Osteoartritis/terapia , Membrana Sinovial/citología
6.
Osteoarthritis Cartilage ; 28(5): 532-543, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32044352

RESUMEN

Inflammatory changes are observed in affected joints of osteoarthritis (OA) patients and are thought to be involved in the pathology that develops along OA progression. This narrative review provides an overview of the various cell types that are present in the joint during OA and which alarmins, cytokines, chemokines, growth factors, and other mediators they produce. Moreover, the involvement of more systemic processes like inflammaging and its associated cellular senescence in the context of OA are discussed.


Asunto(s)
Alarminas/inmunología , Citocinas/inmunología , Inmunidad Innata/inmunología , Inflamación/inmunología , Osteoartritis/inmunología , Senescencia Celular/inmunología , Humanos
7.
Bone ; 130: 115140, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31712132

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disease, characterized by severe joint inflammation and bone destruction as the result of increased numbers and activity of osteoclasts. RA is often associated with metabolic syndrome, whereby elevated levels of LDL are oxidized into oxLDL, which might affect osteoclastogenesis. In this study, we induced antigen-induced arthritis (AIA) in Apoe-/- mice, which spontaneously develop high LDL levels, to investigate the effects of high LDL/oxLDL levels on osteoclast differentiation and bone destruction. Whereas basal levels of bone resorption were comparable between naive WT and Apoe-/- mice, induction of AIA resulted in a significant reduction of bone destruction in Apoe-/- mice as compared to WT controls. In line with that, the TRAP+ area on the cortical bone was significantly decreased. The absence of Apoe did affect neither the numbers of CD11b+Ly6Chigh and CD11b-/Ly6Chigh osteoclast precursors (OCPs) in the BM of naïve mice nor their in vitro osteoclastogenic potential as indicated by comparable mRNA expression of osteoclast markers. Addition of oxLDL, but not LDL, to pre-osteoclasts from day 3 and mature osteoclasts from day 6 of osteoclastogenesis strongly reduced the number of TRAP+ osteoclasts and their resorptive capacity. This coincided with a decreased expression of various osteoclast markers. Interestingly, oxLDL significantly lowered the expression of osteoclast-associated receptor (Oscar) and the DNAX adaptor protein-12 encoding gene Tyrobp, which regulate the immunoreceptor tyrosine-based activation motif (ITAM) co-stimulation pathway that is strongly involved in osteoclastogenesis. Collectively, our findings suggest that under inflammatory conditions in the joint, high LDL levels lessen bone destruction during AIA, probably by formation of oxLDL that inhibits osteoclast formation and activity through modulation of the ITAM-signaling.


Asunto(s)
Artritis Reumatoide , Resorción Ósea , Animales , Diferenciación Celular , Ratones , Ratones Endogámicos C57BL , Osteoclastos , Osteogénesis , Ligando RANK
8.
Clin Exp Immunol ; 195(2): 153-166, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30421798

RESUMEN

Osteoarthritis (OA) is the most common joint disease that strongly reduces the quality of life in patients; However, no disease-modifying therapy is available. For a long time, OA was considered a non-inflammatory disease that was the result of 'wear-and-tear' and abnormal mechanics, and therefore many considered the term 'osteoarthritis' a misnomer. However, during the last decades the notion arose that inflammation is not only present in the majority of OA patients but, rather, actively involved in the progression of the disease. Influx of immune cells is observed in the synovium and a plethora of inflammatory mediators is present in tissues and fluids from OA patients. These mediators cause the production of degrading enzymes that break down the cartilage matrix, which is the main hallmark of OA. Alarmins, which belong to the group of danger signals, have been implicated in many inflammatory diseases. They are among the first factors to be released upon cell stress due to, for example, infection, damage and inflammation. They attract and activate cells of the immune system and therefore lie at the base of the inflammatory reaction. In this narrative review, an overview of the history of OA, the evolving concept of inflammation as important factor in the OA pathogenesis, and particularly the central role that alarmins play in the initiation and maintenance of the low-grade inflammatory response in OA, is provided. Moreover, the targeting of alarmins as a promising approach to dampen the inflammation in OA is highlighted.


Asunto(s)
Alarminas/metabolismo , Osteoartritis/patología , Membrana Sinovial/patología , Humanos , Inflamación/patología , Osteoartritis/inmunología , Osteoartritis/terapia , Líquido Sinovial/metabolismo
9.
Osteoarthritis Cartilage ; 26(12): 1722-1732, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30195046

RESUMEN

OBJECTIVE: Synovitis in collagenase-induced osteoarthritis (CiOA) is driven by locally released S100A8/A9 proteins and enhances joint destruction. S100A8/A9 can induce reactive oxygen species (ROS) release by phagocytes in OA synovium via neutrophil cytosolic factor-1 (Ncf1)-regulated NOX2 activation. In the present study we investigated whether NOX2-derived ROS affect joint pathology during CiOA. METHODS: CiOA was induced in knee joints of wild type (WT) and Ncf1-deficient (Ncf1**) mice. Synovial gene expression of NOX2-subunits was measured with quantitative real-time polymerase chain reaction (qRT-PCR). Joint pathology was assessed using histology and immunohistochemistry for aggrecan neo-epitope VDIPEN. Levels of inflammatory proteins were measured with Luminex or ELISA. Phagocytes in synovium, blood, bone marrow (BM) and spleen were analyzed with flow cytometry. ROS release by phagocytes was measured with a ROS detection kit. RESULTS: CiOA induction in knee joints of WT mice caused significantly increased synovial gene expression of NOX2 subunits. On day 7 of CiOA, cartilage damage and MMP activity, as measured by VDIPEN, were comparable between WT and Ncf1** mice. Synovial thickening, synovial S100A8/A9 levels and percentages of synovial macrophages, polymorphonuclear cells (PMNs), and monocytes were not different, as were levels of inflammatory mediators in serum and phagocyte percentages in blood, BM and spleen. On day 42 of CiOA, synovitis, cartilage damage, and osteophyte formation in Ncf1** mice were unaltered when compared to WT mice. ROS detection confirmed that Ncf1** PMNs lack functional NOX2, but in vitro macrophages showed ROS production, suggesting activation of compensatory mechanisms. CONCLUSIONS: Absence of Ncf1-mediated ROS production does not alter joint pathology in CiOA.


Asunto(s)
Artritis Experimental/metabolismo , NADPH Oxidasa 2/metabolismo , Osteoartritis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Artritis Experimental/patología , Cartílago Articular/lesiones , Cartílago Articular/patología , Colagenasas , Progresión de la Enfermedad , Femenino , Regulación de la Expresión Génica/fisiología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C3H , Ratones Mutantes , NADPH Oxidasa 2/genética , NADPH Oxidasas/deficiencia , NADPH Oxidasas/fisiología , Osteoartritis/patología , Membrana Sinovial/metabolismo
10.
Osteoarthritis Cartilage ; 25(11): 1900-1911, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28735021

RESUMEN

OBJECTIVE: Increased Wisp1 expression was previously reported in experimental and human osteoarthritis (OA). Moreover, adenoviral overexpression of Wisp1 in naïve mouse knee joints resulted in early OA-like cartilage lesions. Here, we determined how the matricellular protein WISP1 is involved in the pathology that occurs in the complex osteoarthritic environment with aging and experimental OA in wild type (WT) and Wisp1-/- mice. METHODS: WT and Wisp1-/- mice were aged or experimental OA was induced with intraarticular collagenase injection, destabilization of the medial meniscus (DMM) or anterior cruciate ligament transection (ACLT). Joint pathology was assessed using histology and microCT. Protease expression was evaluated with qRT-PCR and activity was determined by immunohistochemical staining of the aggrecan neoepitope NITEGE. Protease expression in human end-stage OA synovial tissue was determined with qRT-PCR after stimulation with WISP1. RESULTS: With aging, spontaneous cartilage degeneration in Wisp1-/- was not decreased compared to their WT controls. However, we observed significantly decreased cartilage degeneration in Wisp1-/- mice after induction of three independent experimental OA models. While the degree of osteophyte formation was comparable between WT and Wisp1-/- mice, increased cortical thickness and reduced trabecular spacing was observed in Wisp1-/- mice. In addition, we observed decreased MMP3/9 and ADAMTS4/5 expression in Wisp1-/- mice, which was accompanied by decreased levels of NITEGE. In line with this, stimulation of human OA synovium with WISP1 increased the expression of various proteases. CONCLUSIONS: WISP1 plays an aggravating role in the development of post-traumatic experimental OA.


Asunto(s)
Artritis Experimental/genética , Proteínas CCN de Señalización Intercelular/genética , Cartílago Articular/metabolismo , Osteoartritis de la Rodilla/genética , Péptido Hidrolasas/genética , Proteínas Proto-Oncogénicas/genética , Animales , Ligamento Cruzado Anterior/cirugía , Artritis Experimental/diagnóstico por imagen , Artritis Experimental/metabolismo , Artritis Experimental/patología , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Colagenasas , Modelos Animales de Enfermedad , Humanos , Inyecciones Intraarticulares , Meniscos Tibiales/cirugía , Ratones , Ratones Noqueados , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Osteofito , Péptido Hidrolasas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Membrana Sinovial/metabolismo , Vía de Señalización Wnt , Microtomografía por Rayos X
11.
Osteoarthritis Cartilage ; 25(3): 385-396, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27654963

RESUMEN

OBJECTIVE: Interleukin-1 (IL-1) is an alleged important cytokine in osteoarthritis (OA), although the exact contribution of IL-1 to joint destruction remains unclear. Here we investigated the involvement of IL-1α and IL-1ß in joint pathology during collagenase-induced OA (CiOA). METHODS: CiOA was induced in wild type (WT) and IL-1αß-/- mice. Additionally, IL-1 signaling was inhibited in WT mice with CiOA using osmotic pumps containing IL-1RA. Joint pathology was assessed using histology. Activity of cartilage-degrading enzymes was determined using antibodies against aggrecan neo-epitopes VDIPEN and NITEGE. Synovial gene expression was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). Serum protein levels were measured with Luminex or enzyme-linked immunosorbent assay (ELISA). RESULTS: Synovial IL-1ß expression was strongly elevated 7 days after induction of CiOA in WT mice but decreased afterwards, whereas S100A8/A9, previously described to aggravate OA, remained elevated for 21 days. Remarkably, synovial inflammation was comparable between WT and IL-1αß-/- mice on day 7 of CiOA. In line, synovial mRNA expression of genes involved in IL-1 signaling and inflammatory mediators was comparable between WT and IL-1αß-/- mice, and serum levels for Keratinocyte Chemoattractant (KC)/IL-6/S100A8/S100A9/IL-10 were equal. Synovial matrix metalloproteinase (MMP)/aggrecanase expression and activity in cartilage was not different in WT and IL-1αß-/- mice on day 7 of CiOA. Cartilage destruction on day 42 was not different between WT and IL-1αß-/- mice, which was supported by our finding that IL-1RA treatment in WT mice with CiOA did not alter joint destruction. CONCLUSIONS: IL-1α and IL-1ß are not involved in synovial inflammation and cartilage destruction during CiOA, implicating that other mediators are responsible for the joint damage.


Asunto(s)
Cartílago/patología , Colagenasas/metabolismo , Interleucina-1/metabolismo , Osteoartritis/metabolismo , Sinovitis/metabolismo , Animales , Femenino , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoartritis/etiología , Osteoartritis/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Membrana Sinovial/metabolismo , Sinovitis/etiología , Sinovitis/patología , Transcriptoma
12.
Osteoarthritis Cartilage ; 24(5): 844-55, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26687826

RESUMEN

OBJECTIVE: A relation between osteoarthritis (OA) and increased cholesterol levels is apparent. In the present study we investigate OA pathology in apolipoprotein E (ApoE)(-)(/-) mice with and without a cholesterol-rich diet, a model for high systemic low density lipoprotein (LDL) cholesterol levels independent of weight. METHOD: Wild type (WT), Apoe(-)(/-), S100a9(-/-) and Apoe(-)(/-)S100a9(-/-) mice (C57BL/6 background) received a standard or cholesterol-rich diet. Experimental OA was induced by intra-articular injection of collagenase and animals were sacrificed at day 10 and day 36. RESULTS: Although minimal differences in cartilage damage were found between the WT and ApoE(-)(/-) mice, increased synovial thickening was found in the latter. Thirty-six days after OA-induction, ApoE(-)(/-) mice on a standard diet showed increased ectopic bone formation, particularly at the medial collateral ligament, compared with OA in WT mice. Furthermore, a significant increase in synovial gene expression of both S100a8 and S100a9 and S100A8/S100A9 protein levels was found in ApoE(-)(/-) mice, suggesting an activated inflammatory status of synovial cells. In both ApoE(-)(/-) and WT mice, addition of a cholesterol-rich diet resulted in excessive bone formation in the medial collateral ligament at late-time-point OA. Interestingly, at the early time point, proteoglycan deposition was already significantly increased in ApoE(-)(/-) mice compared with WT mice. Mice deficient for both ApoE and S100a9 also showed increased ectopic bone formation, but not synovial activation, suggesting a role for S100-proteins in cholesterol-mediated synovial activation. CONCLUSIONS: Increased cholesterol levels strongly elevate synovial activation and ectopic bone formation in early-stage collagenase-induced OA.


Asunto(s)
Artritis Experimental/sangre , LDL-Colesterol/sangre , Osificación Heterotópica/sangre , Osteoartritis/sangre , Sinovitis/sangre , Animales , Apolipoproteínas E/sangre , Apolipoproteínas E/deficiencia , Artritis Experimental/complicaciones , Calgranulina A/fisiología , Calgranulina B/fisiología , Colesterol en la Dieta/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Femenino , Errores Innatos del Metabolismo Lipídico/sangre , Errores Innatos del Metabolismo Lipídico/complicaciones , Ratones Endogámicos C57BL , Ratones Noqueados , Osificación Heterotópica/etiología , Osteoartritis/complicaciones , Sinovitis/etiología
13.
Ann Rheum Dis ; 75(1): 218-25, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25180294

RESUMEN

OBJECTIVE: Alarmins S100A8 and S100A9 are major products of activated macrophages regulating cartilage damage and synovial activation during murine and human osteoarthritis (OA). In the current study, we investigated whether S100A8 and S100A9 are involved in osteophyte formation during experimental OA and whether S100A8/A9 predicts osteophyte progression in early human OA. METHODS: OA was elicited in S100A9-/- mice in two experimental models that differ in degree of synovial activation. Osteophyte size, S100A8, S100A9 and VDIPEN neoepitope was measured histologically. Chondrogenesis was induced in murine mesenchymal stem cells in the presence of S100A8. Levels of S100A8/A9 were determined in plasma of early symptomatic OA participants of the Cohort Hip and Cohort Knee (CHECK) cohort study and osteophytes measured after 2 and 5 years. RESULTS: Osteophyte size was drastically reduced in S100A9-/- mice in ligaments and at medial femur and tibia on days 21 and 42 of collagenase-induced OA, in which synovial activation is high. In contrast, osteophyte size was not reduced in S100A9-/- mice during destabilised medial meniscus OA, in which synovial activation is scant. S100A8 increased expression and activation of matrix metalloproteinases during micromass chondrogenesis, thereby possibly increasing cartilage matrix remodelling allowing for larger osteophytes. Interestingly, early symptomatic OA participants of the CHECK study with osteophyte progression after 2 and 5 years had elevated S100A8/A9 plasma levels at baseline, while C-reactive protein, erythrocyte sedimentation rate and cartilage oligomeric matrix protein were not elevated at baseline. CONCLUSIONS: S100A8/A9 aggravate osteophyte formation in experimental OA with high synovial activation and may be used to predict osteophyte progression in early symptomatic human OA.


Asunto(s)
Artritis Experimental/metabolismo , Calgranulina A/fisiología , Calgranulina B/fisiología , Osteoartritis/metabolismo , Osteofito/metabolismo , Animales , Artritis Experimental/complicaciones , Artritis Experimental/patología , Biomarcadores/metabolismo , Calgranulina A/deficiencia , Cartílago Articular/enzimología , Cartílago Articular/fisiopatología , Condrogénesis/fisiología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Metaloproteinasas de la Matriz/biosíntesis , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Osteoartritis/complicaciones , Osteoartritis/patología , Osteofito/etiología , Osteofito/patología , Membrana Sinovial/metabolismo , Regulación hacia Arriba/fisiología
14.
Ann Rheum Dis ; 74(12): 2254-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25969431

RESUMEN

OBJECTIVES: Alarmins S100A8/A9 regulate pathology in experimental osteoarthritis (OA). Paquinimod is an immunomodulatory compound preventing S100A9 binding to TLR-4. We investigated the effect of paquinimod on experimental OA and human OA synovium. MATERIALS AND METHODS: Two OA mouse models differing in level of synovial activation were treated prophylactic with paquinimod. Synovial thickening, osteophyte size and cartilage damage were measured histologically, using an arbitrary score, adapted Pritzker OARSI score or imaging software, respectively. Human OA synovia were stimulated with S100A9, with or without paquinimod. RESULTS: Paquinimod treatment of collagenase-induced OA (CIOA) resulted in significantly reduced synovial thickening (57%), osteophyte size at the medial femur (66%) and cruciate ligaments (67%) and cartilage damage at the medial tibia (47%) and femur (75%; n=7, untreated n=6). In contrast, paquinimod did not reduce osteophyte size and reduced cartilage damage at one location only in destabilised medial meniscus, an OA model with considerably lower synovial activation compared with CIOA. In human OA synovium, paquinimod blocked proinflammatory (interleukin (IL)-6, IL-8, tumour necrosis factor-α) and catabolic (matrix metalloproteinases 1 and 3) factors induced by S100A9 (n=5). CONCLUSIONS: Prophylactic treatment of paquinimod reduces synovial activation, osteophyte formation and cartilage damage in experimental OA with high synovial activation (CIOA) and ameliorates pathological effects of S100A9 in OA synovium ex vivo.


Asunto(s)
Artritis Experimental/prevención & control , Calgranulina B/efectos de los fármacos , Cartílago Articular/patología , Quinolinas/farmacología , Membrana Sinovial/patología , Animales , Artritis Experimental/metabolismo , Artritis Experimental/patología , Calgranulina B/metabolismo , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Colagenasas/toxicidad , Modelos Animales de Enfermedad , Humanos , Inmunosupresores , Masculino , Ratones , Ratones Endogámicos C57BL , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...