Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37443799

RESUMEN

Metabolism not only produces energy necessary for the cell but is also a key regulator of several cellular functions, including pluripotency and self-renewal. Nucleotide sugars (NSs) are activated sugars that link glucose metabolism with cellular functions via protein N-glycosylation and O-GlcNAcylation. Thus, understanding how different metabolic pathways converge in the synthesis of NSs is critical to explore new opportunities for metabolic interference and modulation of stem cell functions. Tracer-based metabolomics is suited for this challenge, however chemically-defined, customizable media for stem cell culture in which nutrients can be replaced with isotopically labeled analogs are scarcely available. Here, we established a customizable flux-conditioned E8 (FC-E8) medium that enables stem cell culture with stable isotopes for metabolic tracing, and a dedicated liquid chromatography mass-spectrometry (LC-MS/MS) method targeting metabolic pathways converging in NS biosynthesis. By 13C6-glucose feeding, we successfully traced the time-course of carbon incorporation into NSs directly via glucose, and indirectly via other pathways, such as glycolysis and pentose phosphate pathways, in induced pluripotent stem cells (hiPSCs) and embryonic stem cells. Then, we applied these tools to investigate the NS biosynthesis in hiPSC lines from a patient affected by deficiency of phosphoglucomutase 1 (PGM1), an enzyme regulating the synthesis of the two most abundant NSs, UDP-glucose and UDP-galactose.


Asunto(s)
Células Madre Pluripotentes , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Glucosa/metabolismo , Células Madre Pluripotentes/metabolismo , Azúcares , Nucleótidos , Uridina Difosfato
2.
Hum Mutat ; 42(2): 135-141, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33169484

RESUMEN

COX16 is involved in the biogenesis of cytochrome-c-oxidase (complex IV), the terminal complex of the mitochondrial respiratory chain. We present the first report of two unrelated patients with the homozygous nonsense variant c.244C>T(p. Arg82*) in COX16 with hypertrophic cardiomyopathy, encephalopathy and severe fatal lactic acidosis, and isolated complex IV deficiency. The absence of COX16 protein expression leads to a complete loss of the holo-complex IV, as detected by Western blot in patient fibroblasts. Lentiviral transduction of patient fibroblasts with wild-type COX16 complementary DNA rescued complex IV biosynthesis. We hypothesize that COX16 could play a role in the copper delivery route of the COX2 module as part of the complex IV assembly. Our data provide clear evidence for the pathogenicity of the COX16 variant as a cause for the observed clinical features and the isolated complex IV deficiency in these two patients and that COX16 deficiency is a cause for mitochondrial disease.


Asunto(s)
Acidosis Láctica , Encefalopatías , Cardiomiopatías , Deficiencia de Citocromo-c Oxidasa , Hepatopatías , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Acidosis Láctica/genética , Cardiomiopatías/genética , Deficiencia de Citocromo-c Oxidasa/genética , Humanos , Recién Nacido , Proteínas Mitocondriales/metabolismo
3.
Clin Genet ; 97(4): 556-566, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31957011

RESUMEN

NGLY1 encodes the enzyme N-glycanase that is involved in the degradation of glycoproteins as part of the endoplasmatic reticulum-associated degradation pathway. Variants in this gene have been described to cause a multisystem disease characterized by neuromotor impairment, neuropathy, intellectual disability, and dysmorphic features. Here, we describe four patients with pathogenic variants in NGLY1. As the clinical features and laboratory results of the patients suggested a multisystem mitochondrial disease, a muscle biopsy had been performed. Biochemical analysis in muscle showed a strongly reduced ATP production rate in all patients, while individual OXPHOS enzyme activities varied from normal to reduced. No causative variants in any mitochondrial disease genes were found using mtDNA analysis and whole exome sequencing. In all four patients, variants in NGLY1 were identified, including two unreported variants (c.849T>G (p.(Cys283Trp)) and c.1067A>G (p.(Glu356Gly)). Western blot analysis of N-glycanase in muscle and fibroblasts showed a complete absence of N-glycanase. One patient showed a decreased basal and maximal oxygen consumption rates in fibroblasts. Mitochondrial morphofunction fibroblast analysis showed patient specific differences when compared to control cell lines. In conclusion, variants in NGLY1 affect mitochondrial energy metabolism which in turn might contribute to the clinical disease course.


Asunto(s)
Epilepsias Mioclónicas/genética , Discapacidad Intelectual/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Polineuropatías/genética , Niño , Preescolar , Trastornos Congénitos de Glicosilación/diagnóstico por imagen , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Epilepsias Mioclónicas/diagnóstico por imagen , Epilepsias Mioclónicas/patología , Femenino , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/patología , Masculino , Mitocondrias/genética , Mitocondrias/patología , Mutación/genética , Polineuropatías/diagnóstico por imagen , Polineuropatías/patología
4.
Eur J Med Genet ; 62(11): 103572, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30423443

RESUMEN

Mitochondrial complex I deficiency is the most frequent mitochondrial disorder presenting in childhood and the mutational spectrum is highly heterogeneous. The NDUFB11 gene is one of the recently identified genes, which is located in the short arm of the X-chromosome. Here we report clinical, biochemical, functional and genetic findings of two male patients with lactic acidosis, hypertrophic cardiomyopathy and isolated complex I deficiency due to de novo hemizygous mutations (c.286C > T and c.328C > T) in the NDUFB11 gene. Neither of them had any skin manifestations. The NDUFB11 gene encodes a relatively small integral membrane protein NDUFB11, which is essential for the assembly of an active complex I. The expression levels of this protein was decreased in both patient cells and a lentiviral complementation experiment also supported the notion that the complex I deficiency in those two patients is caused by NDUFB11 genetic defects. Our findings together with a review of the thirteen previously described patients demonstrate a wide spectrum of clinical features associated with NDUFB11-related complex I deficiency. However, histiocytoid cardiomyopathy and/or congenital sideroblastic anemia could be indicative for mutation in the NDUFB11 gene, while the clinical manifestation of the same mutation can be highly variable.


Asunto(s)
Anemia Sideroblástica/genética , Complejo I de Transporte de Electrón/deficiencia , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Mitocondriales/genética , Adolescente , Anemia Sideroblástica/patología , Preescolar , Complejo I de Transporte de Electrón/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Masculino , Enfermedades Mitocondriales/patología , Mutación , Fenotipo
5.
Nat Commun ; 9(1): 4065, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283131

RESUMEN

Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients' fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.


Asunto(s)
Cardiomiopatías/enzimología , Cardiomiopatías/genética , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Mutación/genética , Transferasas de Grupos Nitrogenados/genética , Subunidades de Proteína/genética , Secuencia de Aminoácidos , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lactante , Recién Nacido , Lentivirus/metabolismo , Masculino , Modelos Moleculares , Miocardio/patología , Miocardio/ultraestructura , Transferasas de Grupos Nitrogenados/química , Transferasas de Grupos Nitrogenados/metabolismo , Fosforilación Oxidativa , Linaje , Biosíntesis de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Eur J Hum Genet ; 25(11): 1273-1277, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28853723

RESUMEN

Mitochondrial respiratory chain complex I consists of 44 different subunits and can be subgrouped into three functional modules: the Q-, the P- and the N-module. NDUFAF4 (C6ORF66) is an assembly factor of complex I that associates with assembly intermediates of the Q-module. Via exome sequencing, we identified a homozygous missense variant in a complex I-deficient patient with Leigh syndrome. Supercomplex analysis in patient fibroblasts revealed specifically altered stoichiometry. Detailed assembly analysis of complex I, indicative of all of its assembly routes, showed an accumulation of parts of the P- and the N-module but not the Q-module. Lentiviral complementation of patient fibroblasts with wild-type NDUFAF4 rescued complex I deficiency and the assembly defect, confirming the causal role of the variant. Our report on the second family affected by an NDUFAF4 variant further characterizes the phenotypic spectrum and sheds light into the role of NDUFAF4 in mitochondrial complex I biogenesis.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Enfermedad de Leigh/genética , Mutación Missense , Proteínas de Unión a Calmodulina/metabolismo , Células Cultivadas , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/metabolismo , Homocigoto , Humanos , Lactante , Enfermedad de Leigh/patología , Masculino , Multimerización de Proteína
7.
Eur J Hum Genet ; 18(3): 324-9, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19809478

RESUMEN

Combined oxidative phosphorylation (OXPHOS) system deficiencies are a group of mitochondrial disorders that are associated with a range of clinical phenotypes and genetic defects. They occur in approximately 30% of all OXPHOS disorders and around 4% are combined complex I, III and IV deficiencies. In this study we present two mutations in the mitochondrial tRNA(Trp) (MT-TW) and tRNA(Arg) (MT-TR) genes, m.5556G>A and m.10450A>G, respectively, which were detected in two unrelated patients showing combined OXPHOS complex I, III and IV deficiencies and progressive multisystemic diseases. Both mitochondrial tRNA mutations were almost homoplasmic in fibroblasts and muscle tissue of the two patients and not present in controls. Patient fibroblasts showed a general mitochondrial translation defect. The mutations resulted in lowered steady-state levels and altered conformations of the tRNAs. Cybrid cell lines showed similar tRNA defects and impairment of OXPHOS complex assembly as patient fibroblasts. Our results show that these tRNA(Trp) and tRNA(Arg) mutations cause the combined OXPHOS deficiencies in the patients, adding to the still expanding group of pathogenic mitochondrial tRNA mutations.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Mutación/genética , Aminoacil-ARN de Transferencia/genética , Secuencia de Bases , Northern Blotting , Preescolar , Análisis Mutacional de ADN , Complejo I de Transporte de Electrón/metabolismo , Electroforesis en Gel de Poliacrilamida , Resultado Fatal , Femenino , Fibroblastos/enzimología , Fibroblastos/patología , Humanos , Lactante , Recién Nacido , Masculino , Mitocondrias/enzimología , Mitocondrias/genética , Datos de Secuencia Molecular , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Conformación de Ácido Nucleico , Embarazo , Biosíntesis de Proteínas , Aminoacil-ARN de Transferencia/química
8.
BMJ Case Rep ; 20092009.
Artículo en Inglés | MEDLINE | ID: mdl-21686774

RESUMEN

To identify the biochemical and molecular genetic defect in a 16-year-old patient presenting with apical hypertrophic cardiomyopathy and neuropathy suspected for a mitochondrial disorder.Measurement of the mitochondrial energy-generating system (MEGS) capacity in muscle and enzyme analysis in muscle and fibroblasts were performed. Relevant parts of the mitochondrial DNA were analysed by sequencing.A homoplasmic nonsense mutation m.8529G→A (p.Trp55X) was found in the mitochondrial ATP8 gene in the patient's fibroblasts and muscle tissue. Reduced complex V activity was measured in the patient's fibroblasts and muscle tissue, and was confirmed in cybrid clones containing patient-derived mitochondrial DNAWe describe the first pathogenic mutation in the mitochondrial ATP8 gene, resulting in an improper assembly and reduced activity of the complex V holoenzyme.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...